6,540
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Strategies for meloxicam delivery to and across the skin: a review

&
Pages 3146-3156 | Received 23 Dec 2015, Accepted 20 Feb 2016, Published online: 28 Mar 2016

References

  • Abdul Rasool KB, Gareeb RH, Fahmy SA, et al. (2011). Meloxicam β-cyclodextrin transdermal gel: physicochemical characterization and in vitro dissolution and diffusion studies. Curr Drug Deliv 8:381–91
  • Ah YC, Choi JK, Choi YK, et al. (2010). A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization. Int J Pharm 385:12–19
  • Ahad A, Raish M, Al-Mohizea AM, et al. (2014). Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel. Int J Biol Macromol 67:99–104
  • Altman RD, Barthel HR. (2011). Topical therapies for osteoarthritis. Drugs 71:1259–79
  • Arantes-Rodrigues R, Pinto-Leite R, Ferreira R, et al. (2013). Meloxicam in the treatment of in vitro and in vivo models of urinary bladder cancer. Biomed Pharmacother 67:277–84
  • Bachhav YG, Patravale VB. (2010). Formulation of meloxicam gel for topical application: in vitro and in vivo evaluation. Acta Pharm 60:153–63
  • Badran MM, Taha EI, Tayel MM, et al. (2014). Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: dependency on the type of surfactants. J Mol Liq 190:16–22
  • Barhate SD. (2011). Development of meloxicam sodium transdermal gel. Int J Pharm Res Dev 2:1–4
  • Busch U, Schmid J, Heinzel G, et al. (1998). Pharmacokinetics of meloxicam in animals and the relevance to humans. Drug Metab Dispos 26:576–84
  • Cevc G, Blume G. (1992). Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104:226–32
  • Cevc G, Richardsen H. (1999). Lipid vesicles and membrane fusion. Adv Drug Deliv Rev 38:207–32
  • Chang J-S, Huang Y-B, Hou S-S, et al. (2007a). Formulation optimization of meloxicam sodium gel using response surface methodology. Int J Pharm 338:48–54
  • Chang J, Wu P, Huang Y, et al. (2006). In-vitro evaluation of meloxicam permeation using response surface methodology. J Food Drug Anal 14:236--41
  • Chang JS, Tsai YH, Wu PC, et al. (2007b). The effect of mixed-solvent and terpenes on percutaneous absorption of meloxicam gel. Drug Dev Ind Pharm 33:984–9
  • Conditions NCCfC. Osteoarthritis: national clinical guideline for care and management in adults. 2008. London (UK): Royal College of Physicians
  • Cui L, Hou X, Jiang J, et al. (2008). Comparative enhancing effects of electret with chemical enhancers on transdermal delivery of meloxicam in vitro. J Phys Conf Ser 142:1–4
  • Davies NM, Skjodt NM. (1999). Clinical pharmacokinetics of meloxicam. A cyclo-oxygenase-2 preferential nonsteroidal anti-inflammatory drug. Clin Pharmacokinet 36:115–26
  • Deeks JJ, Smith LA, Bradley MD. (2002). Efficacy, tolerability, and upper gastrointestinal safety of celecoxib for treatment of osteoarthritis and rheumatoid arthritis: systematic review of randomised controlled trials. BMJ 325:619
  • Degner F, Sigmund R, Zeidler H. (2000). Efficacy and tolerability of meloxicam in an observational, controlled cohort study in patients with rheumatic disease. Clin Ther 22:400–10
  • Distel M, Mueller C, Bluhmki E, et al. (1996). Safety of meloxicam: a global analysis of clinical trials. Br J Rheumatol 35:68–77
  • Dong X, Ke X, Liao Z. (2011). The microstructure characterization of meloxicam microemulsion and its influence on the solubilization capacity. Drug Dev Ind Pharm 37:894–900
  • Duan X-D, Ji C-J, Nie L. (2015). Formulation and development of dendrimer-based transdermal patches of meloxicam for the management of arthritis. Trop J Pharm Res 14:583–90
  • Duangjit S, Obata Y, Sano H, et al. (2012). Menthosomes, novel ultradeformable vesicles for transdermal drug delivery: optimization and characterization. Biol Pharm Bull 35:1720–8
  • Duangjit S, Obata Y, Sano H, et al. (2014a). Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol Pharm Bull 37:239–47
  • Duangjit S, Opanasopit P, Rojanarata T, et al. (2010). Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Deliv 2011:1–9
  • Duangjit S, Opanasopit P, Rojanarata T, et al. (2013). Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech 14:133–40
  • Duangjit S, Pamornpathomkul B, Opanasopit P, et al. (2014b). Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine 9:2005–17
  • El-Badry M, Fathy M. (2006). Enhancement of the dissolution and permeation rates of meloxicam by formation of its freeze-dried solid dispersions in polyvinylpyrrolidone K-30. Drug Dev Ind Pharm 32:141–50
  • El-Badry M, Fetih G, Fathalla D, et al. (2014). Transdermal delivery of meloxicam using niosomal hydrogels: in vitro and pharmacodynamic evaluation. Pharm Dev Technol 20:820–6
  • El-Menshawe SF, Hussein AK. (2013). Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery. Pharm Dev Technol 18:779–86
  • Elmotasem H. (2008). Chitosan–alginate blend films for the transdermal delivery of meloxicam. Asian J Pharm Sci 3:12–29
  • Elsayed MM, Abdallah OY, Naggar VF, et al. (2006). Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 322:60–6
  • Fenn GC, Morant SV. (1997). Safety of meloxicam: a global analysis of clinical trials [British Journal of Rheumatology, 1996;35(suppl. 1):68-77]. Br J Rheumatol 36:817–19
  • Fetih G. (2010). Meloxicam formulations for transdermal delivery: hydrogels versus organogels. J Drug Deliv Sci Technol 20:451–6
  • Gao QZ, Yang LY, Ding PT, et al. (2007). [Percutaneous absorption of meloxicam patches in hairless mouse]. Yao Xue Xue Bao 42:1320–2
  • Goldman AP, Williams CS, Sheng H, et al. (1998). Meloxicam inhibits the growth of colorectal cancer cells. Carcinogenesis 19:2195–9
  • Gupta SK, Bansal P, Bhardwaj RK, et al. (2002). Comparison of analgesic and anti-inflammatory activity of meloxicam gel with diclofenac and piroxicam gels in animal models: pharmacokinetic parameters after topical application. Skin Pharmacol Appl Skin Physiol 15:105–11
  • Hatanaka T, Kamon T, Morigaki S, et al. (2000). Ion pair skin transport of a zwitterionic drug, cephalexin. J Control Release 66:63–71
  • Hoffman AS. (2012). Hydrogels for biomedical applications. Adv Drug Del Rev 64:18–23
  • Huang CT, Tsai CH, Tsou HY, et al. (2011). Formulation optimization of transdermal meloxicam potassium-loaded mesomorphic phases containing ethanol, oleic acid and mixture surfactant using the statistical experimental design methodology. J Microencapsul 28:508–14
  • Inal O, Yapar EA. (2013). Effect of mechanical properties on the release of meloxicam from poloxamer gel bases. Indian J Pharm Sci 75:700–6
  • Jain D, Pathak K. (2010). Design, characterization, and evaluation of meloxicam gel prepared by suspension and solution polymerization using solubility parameter as the basis for development. AAPS PharmSciTech 11:133–42
  • Jain SK, Gupta Y, Jain A, et al. (2008). Elastic liposomes bearing meloxicam-beta-cyclodextrin for transdermal delivery. Curr Drug Deliv 5:207–14
  • Jantharaprapap R, Stagni G. (2007). Effects of penetration enhancers on in vitro permeability of meloxicam gels. Int J Pharm 343:26–33
  • Khalil RM, Abd-Elbary A, Kassem MA, et al. (2014). Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam. Pharm Dev Technol 19:304–14
  • Khurana S, Bedi P, Jain N. (2013a). Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids 175:65–72
  • Khurana S, Jain NK, Bedi PM. (2013b). Development and characterization of a novel controlled release drug delivery system based on nanostructured lipid carriers gel for meloxicam. Life Sci 93:763–72
  • Khurana S, Jain NK, Bedi PM. (2013c). Nanoemulsion based gel for transdermal delivery of meloxicam: physico-chemical, mechanistic investigation. Life Sci 92:383–92
  • Khurana S, Jain NK, Bedi PM. (2015). Nanostructured lipid carriers based nanogel for meloxicam delivery: mechanistic, in-vivo and stability evaluation. Drug Dev Ind Pharm 41:1368–75
  • Ki HM, Choi HK. (2007). The effect of meloxicam/ethanolamine salt formation on percutaneous absorption of meloxicam. Arch Pharm Res 30:215–21
  • Kim T, Kim Y, Seo S, et al. (2009). Anti-hyperalgesic effects of meloxicam hydrogel via phonophoresis in acute inflammation in rats; comparing systemic and topical application. Biomol Ther (Seoul) 17:305–10
  • Kumar M, Chauhan AK, Kumar S, et al. (2010). Design and evaluation of pectin based metrics for transdermal patches of meloxicam. JPRHC 2:244–7
  • Lanes SF, Rodrigeuz LA, Hwangg E. (2000). Baseline risk of gastrointestinal disorders among new users of meloxicam, ibuprofen, diclofenac, naproxen and indomethacin. Pharmacoepidemiol Drug Saf 9:113–17
  • Luger P, Daneck K, Engel W, et al. (1996). Structure and physicochemical properties of meloxicam, a new NSAID. Eur J Pharm Sci 4:175–87
  • Mazzenga GC, Berner B. (1991). The transdermal delivery of zwitterionic drugs I: the solubility of zwitterion salts. J Control Release 16:77–88
  • Mezei M, Gulasekharam V. (1980). Liposomes-a selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci 26:1473–7
  • Miller MA, Pisani E. (1999). The cost of unsafe injections. Bull World Health Organ 77:808–11
  • Mohammadi-Samani S, Yousefi G, Mohammadi F, et al. (2014). Meloxicam transdermal delivery: effect of eutectic point on the rate and extent of skin permeation. Iran J Basic Med Sci 17:112–18
  • Montejo C, Barcia E, Negro S, et al. (2010). Effective antiproliferative effect of meloxicam on prostate cancer cells: development of a new controlled release system. Int J Pharm 387:223–9
  • Muller RH, Mader K, Gohla S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–77
  • Ngawhirunpat T, Opanasopit P, Rojanarata T, et al. (2009). Development of meloxicam-loaded electrospun polyvinyl alcohol mats as a transdermal therapeutic agent. Pharm Dev Technol 14:70–9
  • Nief RA, Hussein AA. (2014). Preparation and evaluation of meloxicam microsponges as transdermal delivery system. Iraqi J Pharm Sci 23:62–74
  • Pairet M, van Ryn J, Schierok H, et al. (1998). Differential inhibition of cyclooxygenases-1 and -2 by meloxicam and its 4'-isomer. Inflamm Res 47:270–6
  • Patel M, Joshi A, Hassanzadeth H, et al. (2011). Quantification of dermal and transdermal delivery of meloxicam gels in rabbits. Drug Dev Ind Pharm 37:613–17
  • Patel MM, Amin AF. (2011). Formulation and development of release modulated colon targeted system of meloxicam for potential application in the prophylaxis of colorectal cancer. Drug Deliv 18:281–93
  • Patoia L, Santucci L, Furno P, et al. (1996). A 4-week, double-blind, parallel-group study to compare the gastrointestinal effects of meloxicam 7.5 mg, meloxicam 15 mg, piroxicam 20 mg and placebo by means of faecal blood loss, endoscopy and symptom evaluation in healthy volunteers. Rheumatology (Oxford) 35:61–7
  • Persons AGSPoPMoPPiO (2009). Pharmacological management of persistent pain in older persons. J Am Geriatr Soc 57:1331--46
  • Prausnitz MR, Langer R. (2008). Transdermal drug delivery. Nat Biotechnol 26:1261–8
  • Prausnitz MR, Mitragotri S, Langer R. (2004). Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–24
  • Rømsing J, Mysager S, Vilmann P, et al. (2001). Postoperative analgesia is not different after local vs systemic administration of meloxicam in patients undergoing inguinal hernia repair. Can J Anaesth 48:978–84
  • Rehman K, Zulfakar MH. (2014). Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm 40:433–40
  • Ren-Jiunn W, Pao-Chu W, Huang Y-B, Yi-Hung T. (2008). The effects of iontophoresis and electroporation on transdermal delivery of meloxicam salts evaluated in vitro and in vivo. J Food Drug Anal 16:41–8
  • Ruiz Martinez MA, Lopez-Viota Gallardo J, de Benavides MM, et al. (2007). Rheological behavior of gels and meloxicam release. Int J Pharm 333:17–23
  • Saleem M, Bala S, Liyakat AA. (2010). Effect of different carriers on in vitro permeation of meloxicam through rat skin. Indian J Pharm Sci 72:710--18
  • Sareen R, Kumar S, Gupta GD. (2011). Meloxicam carbopol-based gels: characterization and evaluation. Curr Drug Deliv 8:407–15
  • Senna GE, Passalacqua G, Dama A, et al. (2003). Nimesulide and meloxicam are a safe alternative drugs for patients intolerant to nonsteroidal anti-inflammatory drugs. Eur Ann Allergy Clin Immunol 35:393–6
  • Stei P, Kruss B, Wiegleb J, et al. (1996). Local tissue tolerability of meloxicam, a new NSAID: indications for parenteral, dermal and mucosal administration. Br J Rheumatol 35:44–50
  • Tenjarla S. (1999). Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 16:461–521
  • Touitou E, Dayan N, Bergelson L, et al. (2000). Ethosomes – novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65:403–18
  • Tsubouchi Y, Mukai S, Kawahito Y, et al. (1999). Meloxicam inhibits the growth of non-small cell lung cancer. Anticancer Res 20:2867–72
  • van den Bergh BA, Bouwstra JA, Junginger HE, et al. (1999). Elasticity of vesicles affects hairless mouse skin structure and permeability. J Control Release 62:367–79
  • Vintiloiu A, Leroux J-C. (2008). Organogels and their use in drug delivery – a review. J Control Release 125:179–92
  • Wang Y, Chen M, Li X, et al. (2008). A hybrid thermo-sensitive chitosan gel for sustained release of Meloxicam. J Biomater Sci Polym Ed 19:1239–47
  • Wiechers JW. (1989). The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm Weekbl Sci 11:185–98
  • Yener G, Uner M, Gonullu U, et al. (2010). Design of meloxicam and lornoxicam transdermal patches: preparation, physical characterization, ex vivo and in vivo studies. Chem Pharm Bull (Tokyo) 58:1466–73
  • Yuan Y, Chen X, Zhong D. (2007). Determination of meloxicam in human plasma by liquid chromatography-tandem mass spectrometry following transdermal administration. J Chromatogr B Analyt Technol Biomed Life Sci 852:650–4
  • Yuan Y, Chen XY, Li SM, et al. (2009). Pharmacokinetic studies of meloxicam following oral and transdermal administration in Beagle dogs. Acta Pharmacol Sin 30:1060–4
  • Yuan Y, Li SM, Mo FK, et al. (2006). Investigation of microemulsion system for transdermal delivery of meloxicam. Int J Pharm 321:117–23
  • Yue Y, LI S-m, YU L-m, et al. (2007). Physicochemical properties and evaluation of microemulsion systems for transdermal delivery of meloxicam. Chem Res Chinese U 23:81–6
  • Zhang JY, Fang L, Tan Z, et al. (2009). Influence of ion-pairing and chemical enhancers on the transdermal delivery of meloxicam. Drug Dev Ind Pharm 35:663–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.