613
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study of Nano-Hydroxyapatite/Recombinant Human Bone Morphogenetic Protein-2 Composite Artificial Bone

, , , , , , , , , , & show all
Pages 150-156 | Published online: 29 Apr 2010

REFERENCES

  • Iwakami, T., Imai, T. (2002). Effect of hydroxyapatite sol on cell proliferation and alkaline phosphatase activity of osteoblastic MC3T3-E1 cells. Biomed. Mater. Eng. 12(3): 249–257.
  • Seeherman, H., Li, R., Bouxsein, M., . (2006). rhBMP-2/calcium phosphate matrix accelerates osteotomy-site healing in a nonhuman primate model at multiple treatment times and concentrations. J Bone Joint Surg Am. 88(1): 144–160.
  • Wan, J.M. (2000). China Patent: Produce Method of Polyporous Biomaterial. ZL 91106753.1 (2000. 1. 22).
  • Jiang, H.P., Wang, D.P. Ruan, J.M., . (2005). Study on toxicity and cytocompatibility of nano-hydroxyapatite artificial bone. China Medical Engineering. 10(5): 458–461.
  • Nemoto, K., Takita, H., Yoshimoto, R., George, J., Miyata, T., Kuboki, Y. (2002). Geometry of honeycomb collagen scaffold gives chamber-type micro-environmental units for ectopic osteogenesis when implanted with purified BMP cocktail into rat skin. Tissue Eng. 8: 1148–1156.
  • Nakano, M., Hirano, N., Ishihara, H., . (2006). Calcium phosphate cement-based vertebroplasty compared with conservative treatment for osteoporotic compression fractures: a matched case-control study. J Neurosurg Spine 4(2): 110–117.
  • Jiang, H.P., Wang, D.P. Zhu, W.M., . (2006). The experimental study on radionuclide bone imaging in repairing bone defect. Chinese Journal of Clinical Anatomy 12(4): 34–36.
  • Goldberg, V.M., Stevenson, S., Shaffer, J.W. (1991). Biology of autografts and allografts. Friedlander G. Bone and Cartilage Allografts, American Academy of Orthopaedic Surgeons, Park Ridge, IL, 1: 3–13.
  • Jouve, J.L., Mottet, V., Cottalorda, J., Frayssinet, P., Bollini, G. (1998). Reimplantation of growth plate chondrocyte cultures in central growth plate defects: Part 1. Characterization of cultures. J Pediatr Orthop B 7: 167–173.
  • Choi, S., Kim, C., Cho, K., . (2002). Effect of recombinant human bone morphogenetic protein22/absorbable collagen sponge (rhBMP22/ACS) on healing in 32 wall intrabony defects in dogs. Periodont 73(1): 63–72.
  • Wu, F., Wei, J., Guo, H., . (2008). Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater. 4(6): 1873–1884.
  • Itoh, H., Aso, Y., Furuse, M., Noishiki, Y., Miyata, T. (2001). A honeycomb collagen carrier for cell culture as a tissue engineering scaffold. Artif. Organs 25(3): 213–217.
  • Tsai, C.H., Lin, R.M., Ju, C.P., . (2008). Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 29(8): 984–993.
  • Zhu, W.M., Wang, D.P., Xiong, J.Y., . (2006). Revascularization study of the Nano-hydroxyapatite artificial bone in repairing the bone defect. Journal of Chinese Microcirculation 10(5): 344–348.
  • Zhu, W., Zhang, X., Wang, D. (2010). Experimental study on the conduction function of nano-hydroxyapatite artificial bone. Micro & Nano Letters 1(5): 19–27.
  • Zhu, W.M., Xiao, J.D., Wang, D.P., . (2009). Experimental study of nano-HA artificial bone with different pore sizes for repairing the radial defect. International Orthopaedics 2(33): 1345–1350.
  • Guo, D., Xu, K., Han, Y. (2009). The in situ synthesis of biphasic calcium phosphate scaffolds with controllable compositions, structures, and adjustable properties. J Biomed Mater Res A. 88(1): 43–52.
  • Tatakis, D.N., Koh, A., Jin, L., . (2002). Peri2implant bone regeneration using recombinant human bone morphogenetic protein22 in a canine model: a dose response study. Periodont Res. 37(2): 93–100.
  • Marukawa, E., Asahina, I., Oda, M., . (2001). Bone regeneration using recombinant human bone morphogenetic protein22 (rhBMP22) in alveolar defects of primate mandibles. Br J Oral Maxillofac Surg. 39(6): 452–459.
  • Wang, X., Ye, J. (2008). Variation of crystal structure of hydroxyapatite in calcium phosphate cement by the substitution of strontium ions. J Mater Sci Mater Med. 19(3): 1183–1186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.