1,085
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Alkaline Phosphatase Based Amperometric Biosensor Immobilized by Cysteamine-Glutaraldehyde Modified Self-Assembled Monolayer

&
Pages 317-323 | Published online: 10 Jun 2011

REFERENCES

  • Stec, B., Holtz, K.M., Kantrowitz, E.R. (2000). A Revised Mechanism for the Alkaline Phosphatase Reaction Involving Three Metal Ions. J. Mol. Biol. 299: 1303–1311.
  • Szydłowska, D., Campas, M., JMarty, J.L., Trojanowicz, M. (2006). Catechol monophosphate as a new substrate for screen-printed amperometric biosensors with immobilized phosphatases. Sens. Act. B: Chemical 113: 787–796.
  • Wilińska, A., Bryjak, J., Illeová, V., Polakovič, M. (2007). Kinetics of thermal inactivation of alkaline phosphatase in bovine and caprine milk and buffer. Int. Dairy J. 17: 579–586.
  • Serra, B., Reviejo, A.J., Pingarrón, J.M. (2007). Application of electrochemical enzyme biosensors for food quality control. Comp. Anal. Chem. 49: 255–298.
  • Wilson, M.S., Rauh, R.D. (2004). Hydroquinone diphospahte: an alkaline phosphatase substrate that does not produce electrode fouling in electrochemical immunoassays. Biosens. Bioelectron. 20: 276–283.
  • Del Carlo, M., Lionti, I., Taccini, M., Cagnini, A., Mascini, M. (1997). Disposable screen-printed electrodes for the immunochemical detection of polychlorinated biphenyls. Anal. Chim. Acta 342: 189–197.
  • Kronkvist, K., Lövgren, U., Svenson, J., Edholm, L.S., Johansson, G. (1997). Competitive flow injection enzyme immunoassay for steroids using a post-column reaction technique. J. Immun. Met. 200: 145–153.
  • Thompson, R.Q., Porter, M., Stuver, C., Halsall, H.B., Heineman, W.R., Buckley, E., Smyth, M.R. (1993). Zeptomole detection limit for alkaline phosphatase using, 4-aminophenylphosphatase, amperometric detection, and an optimal buffer system. Anal. Chim. Acta 271: 223–229.
  • Masson, M., Runarsson, O.V., Johannson, F., Aizawa, M. (2004). 4-Amino-l-naphthyl phosphatase as a substrate for the amperometric detection of alkaline phosphatase activity ands its application for immunoassay. Talanta. 64: 174–180.
  • Shervedani, R.K., Hatefi-Mehrjardi, A., Babadi, M.K. (2007). Comparative electrochemical study of self-assembled monolayers of 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, and 2-mercaptobenzimidazole formed on polycrystalline gold electrode. Electrochim. Acta 52: 7051–7060.
  • Einati, H., Mottel, A., Inberg, A., Shacham, Y. (2009). Electrochemical studies of self-assembled monolayers using impedance spectroscopy. Electrochim. Acta. 54: 6063–6069.
  • Shamsipur, M., Kazemi, S.H., Alizadeh, A., Mousavi, M.F., Workentin, M.S. (2007). Self-assembled monolayers of a hydroquinone-terminated alkanethiol onto gold surface. Interfacial electrochemistry and Michael-addition reaction with glutathione. J. Electroanal. Chem. 610: 218– 226.
  • Da, C., Jinghong, L. (2006). Interfacial design and functionization on metal electrodes through self-assembled monolayers. Sur. Sci. Rep. 61: 445–463.
  • Ang, X.F., Li, F.Y., Wei, J., Tan, W.L., Wong, C.C. (2008). A thermal and passivation study of self-assembled monolayers on thin gold films. Thin Sol. Films, 516: 5721–5724.
  • Quist, F., Kakkar, A. (2007). Self-assembled monolayers: Influence of complementarity between chemisorbed and crystallizing molecules in polymorph selection. J. Coll. Int. Sci. 313: 378–382.
  • Behera, S., Raj, C.R. (2007). Self-assembled monolayers of thio-substituted nucleobases on gold electrode for the electroanalysis of NADH, ethanol and uric acid. Sens Act. B: Chemical 128: 31–38.
  • Chaki, N.K., Vijayamohanan, K. (2002). Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron. 17: 1–12.
  • Subramanian, S., Sampath, S. (2007). Enhanced stability of short- and long-chain diselenide self-assembled monolayers on gold probed by electrochemistry, spectroscopy, and microscopy. J. Coll. and Int. Sci. 312: 413–424.
  • Arya, S.K., Solanki, P.R., Datta, M., Malhotra, B.D. (2009). Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosens. Bioelectron. 24: 2810–2817.
  • Shervedani, R.K., Bagherzadeh, M., Mozaffari, S.A. (2006). Determination of dopamine in the presence of high concentration of ascorbic acid by using gold cysteamine self-assembled monolayers as a nanosensor. Sens. Act. B: Chemical 115: 614–621.
  • Zhu, X., Shi, S., Wei, J., Lv, F., Zhao, H., Kong, J., He, Q., Ni, J. (2007). Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode Environ. Sci. Technol. 41: 6541–6546.
  • Das, J., Jo, K., Lee, J.W., Yang, H. (2007). Electrochemical Immunosensor Using p-Aminophenol Redox Cycling by Hydrazine Combined with a Low Background Current. Anal. Chem. 79: 2790–2796.
  • Bolado, P.F., Garcia, M.B.G., Garcia, A.C. (2006). Flow screen-printed amperometric detection of p-nitrophenol in alkaline phosphatase-based assays. Anal. Bioanal. Chem. 385: 1202–1208.
  • Patil, S.J., Zajac, A., Zhukov, T., Bhansali, S. (2008). Ultrasensitive electrochemical detection of cytokeratin-7, using Au nanowires based biosensor Sens. Act. B: chemical 129: 859–865.
  • Ionescu, R.E., Abu-Rabeah, K., Cosnier, S., Durrieu, C., Chovelon, J.M., Marks, R.S. (2006). Amperometric algal Chlorella vulgaris cell biosensors based on alginate and polypyrrole-alginate gels. Electroanal. 18: 1041–1051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.