678
Views
2
CrossRef citations to date
0
Altmetric
Research Article

High productivity bioethanol fermentation by immobilized Saccharomyces bayanus onto carboxymethylcellulose-g- poly(N-vinyl-2-pyrrolidone) beads

&
Pages 137-143 | Received 11 Apr 2012, Accepted 18 May 2012, Published online: 04 Sep 2012

References

  • Arasaratnam V, Balasubramaniam K. 1998. The use of monochloroacetic acid for improved ethanol production by immobilized Saccharomyces cerevisiae. World J. Microb. Biot. 14: 107–111.
  • Balat M, Balat H. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energ. 86: 2273–2282.
  • Barros MR, Cabral JMS, Novais JM. 1987. Production of ethanol by immobilised Saccharomyces bayanus in an extractive fermentation process. Biotechnol. Bioeng. 29: 1097–1104.
  • Behera S, Kar S, Mohanty RC, Ray RC. 2010. Comparative of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized agar agar and Ca-alginate matices. Appl. Energ. 87: 96–100.
  • Behera S, Mohanty RC, Ray RC. 2011. Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. Sponge discs. Appl. Energ. 88: 22–215.
  • Castellar R, Barros MR, Cabral JMS, Iborra JL. 1998. Effect of zeolite addition on ethanol production from glucose by saccharomyces bayanus. J. Chem. Technol. Biotechnol. 73: 377–384.
  • Dalla-Vecchia R, Sebrão D, Dascimento MG, Soldi V. 2005. Carboxymethylcellulose and poly(vinyl alcohol) used as a film support for lipases immobilization. Process Biochem. 40: 2677–2682.
  • Dellaglio F, Zapparoli G, Malacrinò P, Suzzi G, Torriani S. 2003. Saccharomyces bayanus var. uvarum and Saccharomyces cerevisiae succession during spontaneous fermentations of Recioto and Amarone wines. Ann. Microbiol. 53: 411–425.
  • Fukuda H, Kondo A, Tamalampudi S. 2009. Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem. Eng. J. 44: 2–12.
  • Gao J, Li Z, Wang W, Huang M. 1998. Preparation of gelatin– Nvinylpyrrolidone graft copolymer. J. Appl. Polym. Sci. 68: 1485–1492.
  • Ghorbani F, Younesi H, Sari AE, Najafpour G. 2011. Cane molasses fermentation for continuous ethanol production in an immobilized cell reactor by Saccharomyces cerevisiae. Renew. Energ. 36: 503–509.
  • Gökgöz M, Yiğitoğlu M. 2011. Immobilization of Saccharomyces cerevisiae on to modified carboxymethylcellulose for production of ethanol. Bioprocess Biosyst. Eng. 34: 849–857.
  • Horn SJ, Aasen IM, Ostgaard K. 2000. Ethanol production from seaweed extract. J. Ind. Microbiol. Biot. 25: 249–254.
  • Işiklan N, İnal M, Kurşun F, Ercan G. 2011. pH responsive itaconic acid grafted alginate microspheres for the controlled release of nifedipine. Carbohyd. Polym. 84: 933–943.
  • Iş klan N, İnal M, Yiğitoğlu M. 2008. Synthesis and characterization of poly(N-vinyl-2- pyrrolidone) grafted sodium alginate hydrogel beads for the controlled release of indomethacin. J. Appl. Polym. Sci. 110: 481–493.
  • Joekes I, Moran PJL, Rodrigues JAR, Wendhausen R, Tonella E, Cassiola F. 1998. Characterization of Saccharomyces cerevisiae immobilized onto chrysotile for ethanol production. J. Chem. Technol. Biotechnol. 73: 54–58.
  • Katime I, Valderruten N, Quintana JR. 2001. Controlled release of aminophylline from poly(N-isopropylacrylamide-co-itaconicacid) hydrogels. Polym. Int. 50: 869–874.
  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 21: 377–397.
  • Lebeau T, Jouenne T, Junter G. 1997. Fermentation of D-xylose by free and immobilized Saccharomyces cerevisiae. Biotechnol. Lett. 19: 615–618.
  • Liouni M, Drichoutis P, Nerantzis ET. 2007. Studies of the mechanical properties and the fermentation behavior of double layer alginate-chitosan beads, using Saccharomyces cerevisiae entrapped cells. World J. Microbiol. Biotechnol. 24: 281–288.
  • Liu C, Wang F, Ou-Yang F. 2009. Ethanol fermentation in a magnetically fliized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Bioresource Technol. 100: 878–882.
  • Liu M, Xu ZK, Wang JQ, Wu J, Fu JJ. 2004. Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. Eur. Polym. J. 40: 2077–2087.
  • Liu R, Shen F. 2008. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresource Technol. 99: 847–854.
  • Mallouchos A, Reppa P, Aggelis G, Kanellaki M, Koutinas AA, Komaitis M. 2002. Grape skins as a natural support for yeast immobilization. Biotechnol. Lett. 24: 1331–1335.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.
  • Nabais RC, Correia I, Viegas CA, Novais JM. 1988. Influence of calcium ion on ethanol tolerance of saccharomyces bayanus and alcoholic fermentation by yeasts. Appl. Environ. Microb. 54: 2439–2446.
  • Najafpour G, Younesi H, I smail K. 2004. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour. Technol. 92: 251–260.
  • Naumova ES, Naumov GL, Masneuf-Pomarède I, Aigle M, Dubourdieu D. 2005. Molecular genetic study of introgression between Saccharomyces bayanus and S. Cerevisiae. Yeast 22: 1099–1115.
  • Nikolic S, Mjovic L, Rakin M, Pejin D, Nedovic V. 2009. Effect of different fermentation parameters on bioethanol production from corn meal hydrolyzates by free and immobilized cell of S. cerevisiae var. ellipsoideus. J. Chem. Technol. Biotechnol. 84: 497–503.
  • Phisalaphong M, Budiraharjo R, Bangrak P, Mongkolkajit J, Limtong S. 2007. Alginate-Loofa as carrier matrix for ethanol production. J. Biosci. Bioeng. 104: 214–217.
  • Qiu J, Xu L, Peng J, Zhai M, Zhao L, Li J, Wei G. 2007. Effect of activated carbon on the properties of carboxymethylcellulose/activated carbon hybrid hydrogels synthesized by γ-radiation technique. Carbohyd. Polym. 70: 236–242.
  • Rojey A, Monot F. 2010. Biofuels: Production and applications. In: W. Soetaert and E. Vandamme (eds.), Industrial Biotechnology, Wiley, New York, 413–432.
  • Serra A, Strehaiano P, Taillandier P. 2005. Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth: Impact of a wine yeast interspecific hybridization on these parameters. Int. J. Food Microbiol. 104: 257–265.
  • Shindo S, Tanaka S, Taguchi H, Yoshimura N. 2001. Development of novel carrier using natural zeolite and continuous ethanol fermentation with immobilized Saccharomyces cerevisiae in a bioreactor. Biotechnol. Lett. 23: 2001–2004.
  • Winkelhausen E, Velickova E, Amartey SA, Kuzmanova S. 2010. Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel. Appl. Biochem. Biotechnol. 162: 2214–2220.
  • Yiğitoğlu M, Işiklan N, Özmen R. 2007. Graft copolymerization of N-vinyl-2-pyrrolidone onto sodium carboxymethylcelulose with azobisisobutyronitrile as the initiator. J. Appl. Polym. Sci. 104: 936–943.
  • Yu J, Zhang X, Tan T. 2007. A novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129: 415–420.
  • Zhang Y, Ma Y, Yang F, Zhang C. 2009. Continuous acetone–butanol–ethanol production by corn stalk immobilized cells. J. Ind. Microbiol. Biot. 36: 1117–1121.
  • Zhao J, Xia L. 2010. Ethanol production from corn stover hemicellulosic using immobilized recombinant yeast cells. Biochem. Eng. J. 49: 28–32.
  • Zohuriaan-Mehr MJ, Pourjavadi A, Salehi-Rad M. 2004. Modified CMC. 2. Novel carboxymethylcellulose- based poly (amidoxime) chelating resin with high metal sorption capacity. React. Funct. Polym. 61: 23–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.