97
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Blood Flow in the Cerebral Capillary Network: A Review Emphasizing Observations with Intravital Microscopy

Pages 233-252 | Received 10 Jan 1997, Accepted 05 Apr 1997, Published online: 10 Jul 2009

References

  • Abounader R, Vogel J, Kuschinsky W. Patterns of capillary plasma perfusion in brains of conscious rats during normocapnia and hypercapnia. Circ Res 1995; 76: 120–126
  • Aharinejad S, MacDonald IC, Schmidt EE, Bock P, Hagen D, Groom AC. Scanning and transmission electron microscopy and high resolution intravital video-microscopy of capillaries in the mouse exocrine pancreas, with special emphasis on endothelial cells. Anat Rec 1993; 237: 163–177
  • Alkayed NJ, Birks EK, Hudetz AJ, Roman RJ, Henderson L, Harder DR. Inhibition of brain P-450 arachidonic acid epoxygenase decreases baseline cerebral blood flow. Am J Physiol 1996; 271: H1541–H1546
  • Arnes A, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia II. The no-reflow phenomenon. Am J Pathol 1968; 52: 437–453
  • Atkinson J LD, Anderson RE, Sundt TM. The effect of carbon dioxide on the diameter of brain capillaries. Brain Res 1990; 517: 333–340
  • Auer LM, Ishiyama N, Hodde KC, Kleinert R, Pucher R. Effect of intracranial pressure in bridging veins in rats. J Neurosurg 1987; 67: 263–268
  • Bacic F, Uematsu S, McCarron RM, Spatz M. Prostaglandin D2 in cultured capillary and microvascular endothelium of human brain. Prostaglandins Leukot Essent Fatty Acids 1992; 46: 231–234
  • Barkalow FJ, Goodman MJ, Mayadas TN. Cultured murine cerebral microvascular endothelial cells contain von Willebrand factor-positive Weibel-Palade bodies and support rapid cytokine-induced neutrophil adhesion. Microcirculation 1996; 3: 19–28
  • Bereczki D, Wei L, Otsuka T, Acuff V, Pettigrew K, Patlak C, Fenstermacher J. Hypoxia increases velocity of blood flow through parenchymal microvascular systems in rat brain. J Cereb Blood Flow Metab 1993; 13: 475–486
  • Bereczki D, Wei L, Otsuka T, Hans R-J, Acuff V, Patlak C, Fenstermacher J. Hypercapnia slightly raises blood volume and sizably elevates flow velocity in brain microvessels. Am J Physiol 1993; 264: H1360–H1369, (Heart Circ Physiol 33)
  • Biswal B, Hudetz AG. Synchronous oscillations in cerebrocortical capillary red blood cell velocity after nitric oxide synthase inhibition. Microvasc Res 1996; 21: 1–12
  • Catalan RE, Martinez AM, Aragones MD, Hernandez F. Identification of nitric oxide synthases in isolated bovine brain vessels. Neurosci Res 1996; 25: 195–199
  • Chambers R, Zweifach BW. Topography and function of the mesenteric capillary circulation. Am J Anat 1944; 75: 173–205
  • Chang BL, Santillan G, Bing RJ. Red cell velocity and autoregulation in the cerebral cortex of the cat. Brain Res 1984; 308: 15–24
  • Chen J-L, Wei L, Acuff V, Bereczki D, Hans F-J, Otsuka T, Finnegan W, Patlak C, Fenstermacher J. Slightly altered permeability-surface area products imply some cerebral capillary recruitment during hypercapnia. Microvasc Res 1994; 48: 190–211
  • Corvin S, Schürer L, Abels C, Kempski O, Baethmann A. Effect of stimulation of leukocyte chemotaxis by fMLP on white blood cell behaviour in the microcirculation of rat brain. Acta Neurochir Suppl (Wien) 1990; 51: 55–57
  • Cox SB, Woolsey TA, Rovainen CM. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 1993; 13: 899–913
  • Cremer JE, Seville MP. Regional brain blood flow, blood volume, and haematocrit values in the adult rat. J Cereb Blood Flow Metab 1983; 3: 254–256
  • Cuevas P, Gutierrez-Diaz JA, Reimers D, Dujovny M, Diaz FG, Ausman JI. Pericyte endothelial gap junctions in human cerebral capillaries. Anat Embryol (Berl) 1984; 170: 155–159
  • Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75: 519–560
  • del Zoppo GJ. Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev 1994; 6: 47–96
  • Dietrich HH. Effect of locally applied epinephrine and norepinephrine on blood flow and diameter in capillaries of rat mesentery. Microvasc Res 1989; 38: 125–135
  • Dietrich HH, Kajita Y, Dacey J RG. Local and conducted vasomotor responses in isolated rat cerebral arterioles. Am J Physiol 1996; 271: H1109–H1116, (Heart Circ Physiol 40)
  • Dirnagl U, Niwa K, Sixt G, Villringer A. Cortical hypoperfusion after global forebrain ischemia in rats is not caused by microvascular leukocyte plugging. Stroke 1994; 25: 1028–1038
  • Dirnagl U, Villringer A, Gebhard R, Haberl RL, Schmiedek P, Einhaupl KM. Three-dimensional reconstruction of the rat brain cortical microcirculation. in vivo. J Cereb Blood Flow Metab 1991; 11: 353–360
  • Dodge AB, Hechtman HB, Shepro D. Microvascular endothelial-derived autacoids regulate pericyte contractility. Cell Motil Cytoskeleton 1991; 18: 180–188
  • Duelli R, Kuschinsky W. Changes in brain capillary diameter during hypocapnia and hypercapnia. J Cereb Blood Flow Metab 1993; 13: 1025–1028
  • Duret M. Recherches anatomotiques sur la circulation de l'encephale. Arch Physiol Norm Pathol 1874; 2: 316–354
  • Duvernoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull 1981; 7: 519–579
  • Eke A. Multiparametric imaging of microregional circulation over the brain cortex by videoreflectometry. Adv Exp Med Biol 1993; 333: 183–191
  • Ellsworth ML, Forrester T, Ellis CG, Dietrich HH. The erythrocyte as a regulator of vascular tone. Am J Physiol 1995; 269: H2155–H2161
  • Ennis SR, Keep RF, Schielke GP, Betz AL. Decrease in perfusion of cerebral capillaries during incomplete ischemia and reperfusion. J Cereb Blood Flow Metab 1990; 10: 213–220
  • Francois-Dainville E, Buchweitz E, Weiss HR. Effect of hypoxia on percent arteriolar and capillary beds perfused in the rat brain. J Appl Physiol 1986; 60: 280–288
  • Gabbott P LA, Bacon SJ. Histochemical localization of NADPH-dependent diaphorase (nitric oxide synthase) activity in vascular endothelial cells in the rat brain. Neuroscience 1993; 57: 79–95
  • Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994; 144: 188–199
  • Geng J-G, Bevilacqua MP, Moore KL, McIntyre TM, Prescott SM, Kim JM, Bliss GA, Zimmerman GA, McEver RP. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 1990; 343: 757–760
  • Gjedde A, Kuwabara H, Hakim AM. Reduction of functional capillary density in human brain after stroke. J Cereb Blood Flow Metab 1990; 10: 317–326
  • Göbel U, Klein B, Schröck H, Kuschinsky W. Lack of capillary recruitment in the brains of awake rats during hypercapnia. J Cereb Blood Flow Metab 1989; 9: 491–499
  • Grover GJ, Francois-Dainville E, Buchweitz E, Weiss HR. Effect of hemorrhage on regional morphometric indexes of cerebral capillarity. J Appl Physiol 1986; 61: 1712–1719
  • Haefliger IO, Zschauer A, Anderson DA. Relaxation of retinal pericyte contractile tone through the nitric-oxide-cyclic guanosine monophosphate pathway. Invest Opthalamol Vis Sci 1994; 35: 991–997
  • Haggendal E, Nilsson NJ. Effect of blood corpuscle concentration on cerebral blood flow. Acta Chir Scand 1966; 36: 3–12
  • Hasegawa T, Ravens JR, Toole JF. Precapillary arteriovenosus anastomoses: “thoroughfare channel” in the brain. Arch Neurol 1967; 16: 217–224
  • Heros RC, Korosue K. Hemodilution for cerebral ischemia. Stroke 1989; 20: 423–427
  • Hossmann KA, Lechtape-Gruter H, Hossmann V. The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 1973; 204: 281–299
  • Hudak ML, Koehler RC, Rosenberg AA, Traystman RJ, Jones J. Effect of hematocrit on cerebral blood flow. Am J Physiol 1986; 251: H63–H70
  • Hudetz AG. Computer simulation of erythrocyte transit in the cerebrocortical capillary network. Adv Exp Med Biol 1992; 317: 659–670
  • Hudetz AG. Adv Exp Med Biol 1997, Regulation of oxygen supply in the cerebral circulation. (in press).
  • Hudetz AG, Biswal B, Fehér G, Kampine JP. Microvasc Res 1997, Effects of hypoxia and hypercapnia on capillary flow velocity in the rat cerebral cortex. (in press).
  • Hudetz AG, Biswal B, Kampine JP. 7-Nitro-indazole abolishes cerebral capillary flow response to hypoxia. FASEB J 1996; 10: 3123
  • Hudetz AG, Fehér G, Kampine JP. Heterogeneous autoregulation of cerebrocortical capillary flow: evidence for functional thoroughfare channels?. Microvasc Res 1996; 51: 131–136
  • Hudetz AG, Fehér G, Knuese DE, Kampine JP. Erythrocyte flow heterogeneity in the cerebrocortical capillary network. Adv Exp Med Biol 1994; 345: 633–642
  • Hudetz AG, Fehér G, Weigle C GM, Knuese DE, Kampine JP. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension. Am J Physiol 1995; 268: H2202–H2210, (Heart Circ Physiol 37)
  • Hudetz AG, Greene AS, Fehér G, Knuese DE, Cowley AW. Imaging system for three dimensional mapping of cerebrocortical capillary networks. in vivo. Microvasc Res 1993; 46: 293–309
  • Hudetz AG, Oliver JA, Wood JD, Newman PJ, Kampine JP. Leukocyte adhesion in pial cerebral venules after PMA stimulation and ischemia/reperfusion. in vivo. Adv Exp Med Biol 1997; 411: 513–518
  • Hudetz AG, Roman RJ, Harder DR. Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure. J Cereb Blood Flow Metab 1992; 12: 491–499
  • Hudetz AG, Smith JJ, Lee JG, Bosnjak ZJ, Kampine JP. Modification of cerebral laser-Doppler flow oscillations by halothane, PCO2, and nitric oxide synthase blockade. Am J Physiol 1995; 269: H114–H120
  • Hudetz AG, Weigle C GM, Fenoy FJ, Roman R. Use of fluorescently labeled erythrocytes and digital cross-correlation for the measurement of flow velocity in the cerebrocortical microcirculation. Microvasc Res 1992; 43: 334–341
  • Hudetz AG, Wood JD, Newman PJ, Kampine JP. Nitric oxide synthase inhibition augments postischemic leukocyte adhesion in pial cerebral venules in vivo. The Biology of Nitric Oxide, Part 5, S Moncada, J Stamler, S Gross, EA Higgs. Portland Press, London 1996; 312
  • Hurn PD, Traystman RJ, Shoukas AA, Jones MD. Pial microvascular hemodynamics in anemia. Am J Physiol 1993; 264: H2131–H2135
  • Iadecola C, Beitz AJ, Renno W, Xu X, Mayer B, Zhang F. Nitric oxide synthase-containing neural processes on large cerebral arteries and cerebral microvessels. Brain Res 1993; 606: 148–155
  • Ivanov KP, Kalinina MK, Levkovich YI. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvasc Res 1981; 22: 143–155
  • Johansson BB, Auer LM, Sayama I. Reaction of pial arterioles and veins to hypercapnia in hypertensive and normotensive rats. Stroke 1985; 16: 320–323
  • Jones EG. On the mode of entry of blood vessels into the cerebral cortex. J Anat 1970; 106: 507–520
  • Jones MD, Traystman RJ, Simmons MA, Molteni RA. Effects of changes in arterial O2 content on cerebral blood flow in the lamb. Am J Physiol 1981; 240: H209–H215
  • Kajita Y, Dietrich HH, Dacey RG, Jr. Effects of oxyhemoglobin on local and propagated vasodilatory responses induced by adenosine, adenosine diphosphate, and adenosine triphosphate in rat cerebral arterioles. J Neurosurg 1996; 85: 908–916
  • Kawamura S, Schürer L, Goetz A, Kempski O, Schmucker B, Baethmann A. An improved closed cranial window technique for investigation of blood-brain barrier function and cerebral vasomotor control in the rat. Int J Microcirc Clin Exp 1990; 9: 369–383
  • Kelley C, D'Amore P, Hechtman HB, Shepro D. Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J Cell Biol 1987; 104: 483–490
  • Kelley C, D'Amore P, Hechtman HB, Shepro D. Vasoactive hormones and cAMP affect pericyte contraction and stress fibres. in vitro. J Muscle Res Cell Motil 1988; 9: 184–194
  • Kennady JC, Taplin GV. Shunting in cerebral microcirculation. Am Surg 1967; 33: 763–771
  • Kislyakov YY, Levkovitch YI, Shuymilova TE, Vershinina EA. Blood flow fluctuations in cerebral cortex microvessels. Int J Microcirc Clin Exp 1987; 6: 3–13
  • Knuese DE, Fehér G, Hudetz AG. Automated measurement of fluorescently labeled erythrocyte flux in cerebrocortical capillaries. Microvasc Res 1994; 47: 392–400
  • Koenig HM, Pelligrino DA, Albrecht RF. Halothane vasodilation and nitric oxide in rat pial vessels. J Neurosurg Anesth 1993; 5: 264–271
  • Kontos HA. Cerebral preparations: advantages and disadvantages. Microcirculatory Technology, CH Baker, WL Nastuk. Academic Press, New York 1986; 55–64
  • Koo A, Cheng KK. Cerebral microvascular volume flow: its measurement and responses to hemorrhagic hypotension in the rat. Microvasc Res 1974; 8: 151–155
  • Kuschinsky W. Capillary perfusion in the brain. Pflugers Arch 1996; 432: R42–R46
  • Kuschinsky W, Paulson OB. Capillary circulation in the brain. Cerebrovasc Brain Metab Rev 1992; 4: 261–286
  • Leniger-Follert E, Lubbers DW. Interdependence of capillary flow and regional blood flow in the brain. Cerebral Circulation and Metabolism, TW Langfitt, J McHenry, L CM Reivich, H Wollman. Springer, New York 1975; 46–48
  • Lin SZ, Chiou TL, Song WS, Chiang YH. Isovolemic hemodilution normalizes the prolonged passage of red cells and plasma through cerebral microvessels in the partially ischemic forebrain of rats. J Cereb Blood Flow Metab 1996; 16: 280–289
  • Lindauer U, Dreier J, Angstwurm K, Rubin I, Villringer A, Einhaupl K-M, Dirnagl U. Role of nitric oxide synthase inhibition in leukocyte-endothelium interaction in the rat pial microvasculature. J Cereb Blood Flow Metab 1996; 16: 1143–1152
  • Lindbom L, Mirhashemi S, Intaglietta M, Arfors KE. Increase in capillary blood flow and relative haematocrit in rabbit skeletal muscle following acute normovolaemic anaemia. Acta Physiol Scand 1988; 134: 503–512
  • Lipowsky HH. In situ measurement of microvascular hematocrit. Microcirculatory Technology, CH Baker, WL Nastuk. Academic Press, Orlando, FL 1986; 161–178
  • Little TL, Beyer EC, Duling BR. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium. in vivo. Am J Physiol 1995; 268: H729–H739
  • Lübbers DW, Baumgartl H, Zimelka W. Heterogeneity and stability of local PO2 distribution within the brain tissue. Adv Exp Med Biol 1994; 345: 567–574
  • Lübbers DW, Hauck G, Weigelt H. Reactions of capillary flow to electrical stimulation of the capillary wall and to application of different ions. Ionic Actions on Vascular Smooth Muscle, E Betz. Springer, Berlin 1976; 44–47
  • Lübbers DW, Leniger-Follert E. Capillary flow in the brain cortex during changes in oxygen supply and state of activation. In:. Cerebral Vascular Smooth Muscle and Its Control. Ciba Found Symp 1978; 56: 21–47
  • Luiten P GM, Dejong GI, Vanderzee EA, Vandijken H. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries. Brain Res 1996; 720: 225–229
  • Ma YP, Koo A, Kwan HC, Cheng KK. Online measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat. Microvasc Res 1974; 8: 1–13
  • Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 1996; 272: 551–554
  • Marcus AJ. Eicosanoid interactions between platelets, endothelia cells, and neutrophils. Methods Enzymol 1990; 187: 585–599
  • Marcus ML, Hesitad DD, Ehrhardt JC, Abboud FM. Total and regional cerebral blood flow measurement with 7–10-, 15-, 25-, and 50mm microspheres. J Appl Physiol 1976; 40: 501–507
  • McKnight TR, Curry FE. Cell-cell communication of calcium in a single, perfused frog microvessel. Microcirculation 1996; 3: 98, (abstr.).
  • Mirhashemi S, Messmer K, Arfors KE, Intaglietta M. Microcirculatory effects of normovolemic hemodilution in skeletal muscle. Int J Microcirc Clin Exp 1987; 6: 359–369
  • Mironov V, Hritz MA, LaManna JC, Hudetz AG, Harik SI. Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res 1994; 660: 73–80
  • Mitchell D, Tyml K. Nitric oxide release in rat skeletal muscle capillary. Am J Physiol 1996; 270: H1696–H1703
  • Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 1995; 128: 661–671
  • Morii S, Ngai AC, Winn HR. Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: with detailed description of the closed cranial window technique in rats. J Cereb Blood Flow Metab 1986; 6: 34–41
  • Motti ED, Imhof HG, Yasargil MG. The terminal vascular bed in the superficial cortex of the rat: an SEM study of corrosion casts. J Neurosurg 1986; 65: 834–846
  • Muizelaar JP, Bouma GJ, Levasseur JE, Kontos HA. Effect of hematocrit variations on cerebral blood flow and basilar artery diameter. in vivo. Am J Physiol 1992; 262: H949–H954
  • Murphy S, Minor RL, Jr, Welk G, Harrison DG. Evidence for an astrocyte-derived vasorelaxing factor with properties similar to nitric oxide. J Neurochem 1990; 55: 349–351
  • Nakai K, Imai H, Kamel I, Itakura T, Komari N, Kimura H, Nagai T, Meada T. Microangio-architecture of rat parietal cortex with special reference to vascular sphincters. Stroke 1981; 12: 653–659
  • Nehls V, Drenckhahn D. The versatility of microvascular pericytes: from mesenchyme to smooth muscle?. Histochemistry 1993; 99: 1–12
  • Niimi H, Yamakawa T. Rheological factors influencing oxygen transfer in heart and brain. Adv Exp Med Biol 1985; 191: 523–532
  • Owman CH, Edvinsson L, Hardebo JE, Gröschel-Stewart U, Unsicker K, Walles B. Immunohistochemical demonstration of actin and myosin in brain capillaries. Acta Neurochir Scand 1977; 56(Suppl)384–385
  • Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow?. Science 1987; 237: 896–898
  • Pawlik G, Rackl A, Bing RJ. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res 1981; 208: 35–58
  • Pfeifer RA. Die Angioarchitectonik der Crosshirnrinde. Springer, Berlin 1928
  • Pries AR, Fritzsche A, Ley K, Gaehtgens P. Redistribution of red blood cell flow in microcirculatory networks by hemodilution. Circ Res 1992; 70: 1113–1121
  • Prosenz P. Investigations on the filter capacity of the dog's brain. Arch Neurol 1972; 26: 479–488
  • Ragan DM, Schmidt EE, MacDonald IC, Groom AC. Spontaneous cyclic contractions of the capillary wall in vivo, impeding red cell flow: a quantitative analysis. Evidence for endothelial contractility. Microvasc Res 1988; 36: 13–30
  • Regidor J, Edvinsson L, Divac I. NOS neurones lie near branchings of cortical arteriolae. Neuroreport 1993; 4: 112–114
  • Rosenblum WI. Cerebral microcirculation: a review emphasizing the interrelationship of local blood flow and neuronal function. Angiology 1965; 16: 485–507
  • Rosenblum WI. Erythrocyte velocity and a velocity pulse in minute blood vessels on the surface of the mouse brain. Circ Res 1969; 24: 887–892
  • Rosenblum WI. Effects of reduced hematocrit on erythrocyte velocity and fluorescein transit time in the cerebral microcirculation of the mouse. Circ Res 1971; 29: 96–103
  • Rosenblum WI, Weinbrecht P, Nelson GL. Propagated constriction in mouse pial arterioles: possible role of endothelium in transmitting the propagated response. Microcirc Endothelium Lymphatics 1990; 6: 369–387
  • Rosenblum WI, Zweifach BW. Cerebral microcirculation in the mouse brain. Arch Neurol 1963; 9: 414–423
  • Rovainen CM, Woolsey TA, Blocher NC, Wang D-B, Robinson OF. Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads and computer-assisted image analysis. J Cereb Blood Flow Metab 1993; 13: 359–371
  • Schmid-Schönbein GW, Skalak R, Usami S, Chien S. Cell distribution in capillary networks. Microvasc Res 1980; 19: 18–44
  • Slaaf DW, Tangelder GJ, Reneman RS, Jager K, Bollinger A. A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 1987; 6: 391–397
  • Theilen H, Schröck H, Kuschinsky W. Capillary perfusion during incomplete forebrain ischemia and reperfusion in the brain. Am J Physiol 1993; 265: H642–H648
  • Theilen H, Schröck H, Kuschinsky W. Gross persistence of capillary plasma perfusion after middle cerebral artery occlusion in the rat brain. J Cereb Blood Flow Metab 1994; 14: 1055–1061
  • Tilton RG, Kilo C, Williamson JR, Murch DW. Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculature. Microvasc Res 1979; 18: 336–352
  • Todd MM, Weeks JB, Warner DS. Cerebral blood flow, blood volume, and brain tissue hematocrit during isovolemic hemodilution with hetastarch in rats. Am J Physiol 1992; 263: H75–H82
  • Tyml K. Heterogeneity of microvascular flow in rat skeletal muscle is reduced by contraction and by hemodilution. Int J Microcirc Clin Exp 1991; 10: 75–86
  • Villringer A, Them A, Lindauer U, Dirnagl U. Capillary perfusion of the rat brain cortex: an in vivo confocal microscopy study. Circ Res 1994; 75: 55–62
  • Villringer A, Dirnagl U, Them A, Schurer L, Krombach F, Einhaupl KM. Imaging of leukocytes within the rat brain cortex. in vivo. Microvasc Res 1991; 42: 305–315
  • Villringer A, Haberl RL, Dirnagl U, Anneser F, Verst M, Einhaupl KM. Confocal laser microscopy to study microcirculation on the rat brain surface. in vivo. Brain Res 1989; 504: 159–160
  • Vink H, Duling BR. Distinct luminal domains for macromolecules, erythrocytes and leukocytes in mammalian capillaries. Microcirculation 1996; 3: 108, (abstr.).
  • Vogel J, Abounader R, Schröck H, Zeller K, Duelli R, Kuschinsky W. Parallel changes of blood flow and heterogeneity of capillary plasma perfusion in rat brains during hypocapnia. Am J Physiol 1996; 270: H1441–H1445
  • Vogel J, Kuschinsky W. Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia. J Cereb Blood Flow Metab 1996; 16: 1300–1306
  • Waschke KF, Krieter H, Hagen G, Albrecht DM, Van Ackern K, Kuschinsky W. Lack of dependence of cerebral blood flow on blood viscosity after blood exchange with a Newtonian O2 carrier. J Cereb Blood Flow Metab 1994; 4: 871–876
  • Watanabe M, Harada N, Kosaka H, Shiga T. Intravital microreflectometry of individual pial vessels and capillary region of rat. J Cereb Blood Flow Metab 1994; 14: 75–84
  • Wei L, Otsuka T, Acuff V, Berecki D, Pettigrew K, Patlak C, Fenstermacher J. The velocities of red cell and plasma flows through parenchymal microvessels of rat brain are decreased by pentobarbital. J Cereb Blood Flow Metab 1993; 13: 487–497
  • Wood JH, Polyzoidis KS, Kee J DB, Prats AR, Gibby GL, Tindall GT. Augmentation of cerebral blood flow induced by hemodilution in stroke patients after superficial temporal-middle cerebral arterial bypass operation. Neurosurgery 1984; 5: 535–539
  • Woolsey TA, Rovainen CM, Cox SB, Henegar MH, Liang GE, Liu D, Moskalenko YE, Sui J, Wei L. Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb Cortex 1996; 6: 647–660
  • Yamakawa T, Yamaguchi S, Niimi H, Sugiyama I. White blood cell plugging and blood flow maldistribution in the capillary network of cat cerebral cortex in acute hemorrhagic hypotension: an intravital microscopic study. Circ Shock 1987; 22: 323–332
  • Yuan X-G, Smith TL, Prough DS, De Witt DS, Dusseau JW, Lynch CD, Fulton JM, Hutchins PM. Long-term effects of nimodipine on pial microvasculature and systemic circulation in conscious rats. Am J Physiol 1990; 258: H1395–H1401
  • Zweifach BW. A micro-manipulative study of blood capillaries. Anat Rec 1934; 59: 83–108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.