147
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Integrated approach to the mechanisms of thyroid toxins: electron transfer, reactive oxygen species, oxidative stress, cell signaling, receptors, and antioxidants

&
Pages 133-142 | Received 08 Jan 2010, Accepted 05 Feb 2010, Published online: 18 Mar 2010

References

  • Kovacic P., Jacintho JD. Reproductive toxins: Pervasive theme of oxidative stress and electron transfer. Curr Med Chem 2001, 8, 63–892.
  • Kovacic P, Somanathan R. Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res C Embryo Today 2006, 78, 308–325.
  • Kovacic P, Sacman A, Wu-Weis M. Nephrotoxins: widespread role of oxidative stress and electron transfer. Curr Med Chem 2002, 9, 823–847.
  • Poli G, Cheeseman KH, Dianzani MU, Slater TF. Free Radicals in the Pathogenesis of Liver Injury. Pergamon: New York, 1989, pp. 1–330.
  • Kovacic P, Thurn LA. Cardiovascular toxicity from the perspective of oxidative stress, electron transfer, and prevention by antioxidants. Curr Vasc Pharmacol 2005, 3, 107–117.
  • Kovacic P, Somanathan R. Neurotoxicity: The broad framework of electron transfer, oxidative stress and protection by antioxidants. Curr Med Chem 2005, 5, 249–258.
  • Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 2005, 12, 2601–2623.
  • Kovacic P, Cooksy AL. Unifying mechanism for toxicity and addiction by abused drugs: electron transfer and reactive oxygen species. Med Hypotheses 2005, 64, 357–366.
  • Kovacic P, Somanathan R. Ototoxicity and noise trauma: electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants: practical medical aspects. Med Hypotheses 2008, 70, 914–923.
  • Kovacic P, Somanathan R. Integrated approach to immunotoxicity: electron transfer, reactive oxygen species, antioxidants, cell signaling, and receptors. J Recept Signal Transduct Res 2008, 28, 323–346.
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press: New York, 1999, 3rd Ed., pp. 270–271, 437, 442–445.
  • Kovacic P, Becvar LE. Mode of action of anti-infective agents: Focus on oxidative stress and electron transfer. Curr Pharm Des 2009, 6, 143–167.
  • Kovacic P, Osuna JA Jr. Mechanisms of anti-cancer agents: emphasis on oxidative stress and electron transfer. Curr Pharm Des 2000, 6, 277–309.
  • Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 2001, 8, 773–796.
  • Loevner LA. Imaging of the thyroid gland. Semin Ultrasound CT MR 1996, 17, 539–562.
  • Zoeller RT, Tan SW, Tyl RW. General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit Rev Toxicol 2007, 37, 11–53.
  • Toni R. Ancient views on the hypothalamic-pituitary-thyroid axis: an historical and epistemological perspective. Pituitary 2000, 3, 83–95.
  • Karbownik M, Lewinski A. The role of oxidative stress in physiological and pathological processes in the thyroid gland, possible involvement in pineal-thyroid interactions. Neuro Endocrinol Lett 2003, 24, 293–303.
  • Carrasco N. Thyroid Iodine Transport. In Werner and Ingbar’s The Thyroid: a Fundamental and Clinical Text, Braverman, L.E., Utiger, R.D., Eds., Lippincott Williams & Wilkins: Philadelphia, 2005, 9th Ed., pp. 37–52.
  • Kopp P. Thyroid Hormone Synthesis. In Werner and Ingbar’s The Thyroid: a Fundamental and Clinical Text, Braverman, L.E., Utiger, R.D., Eds., Lippincott Williams & Wilkins: Philadelphia, 2005, 9th Ed., pp. 53–76.
  • Yen PM. Genomic and Nongenomic Actions of Thyroid Hormones. In Werner and Ingbar’s The Thyroid: a Fundamental and Clinical Text, Braverman, L.E., Utiger, R.D., Eds., Lippincott Williams & Wilkins: Philadelphia, 2005, 9th Ed., pp. 135–150.
  • Landex NL, Thomsen J, Kayser L. Methimazole increases H2O2 toxicity in human thyroid epithelial cells. Acta Histochem 2006, 108, 431–439.
  • Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, Maenhaut C, Miot F, Van Sande J, Many MC, Dumont JE. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab 2007, 92, 3764–3773.
  • Mizukami Y, Matsubara F, Matsukawa S. Cytochemical localization of peroxidase and hydrogen-peroxide-producing NAD(P)H-oxidase in thyroid follicular cells of propylthiouracil-treated rats. Histochemistry 1985, 82, 263–268.
  • Kotake Y. [In vitro effects of anesthetics on hydrogen peroxide generating system of the thyroid gland]. Masui 1993, 42, 1820–1827.
  • Törnquist K, Vainio PJ, Björklund S, Titievsky A, Dugué, B, Tuominen RK. Hydrogen peroxide attenuates store-operated calcium entry and enhances calcium extrusion in thyroid FRTL-5 cells. Biochem J 2000, 351, 47–56.
  • Nakamura Y, Ohtaki S, Makino R, Tanaka T, Ishimura Y. Superoxide anion is the initial product in the hydrogen peroxide formation catalyzed by NADPH oxidase in porcine thyroid plasma membrane. J Biol Chem 1989, 264, 4759–4761.
  • Sugawara M, Sugawara Y, Wen K, Giulivi C. Generation of oxygen free radicals in thyroid cells and inhibition of thyroid peroxidase. Exp Biol Med (Maywood) 2002, 227, 141–146.
  • Köhrle J, Jakob F, Contempré, B, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev 2005, 26, 944–984.
  • Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ, Vulsma T, Ris-Stalpers C. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 2002, 347, 95–102.
  • Rom-Boguslavskaia ES, Somova EV, Ovsiannikova TN, Diageleva EA, Karachentsev IuI Asaula, VA. [Lipid peroxidation in thyroid tissue of people with diffuse toxic goiter]. Ukr Biokhim Zh 1997, 69, 111–114.
  • Benvenga S. Thyroid Hormone Transport Proteins and the Physiology of Hormone Binding. In Werner and Ingbar’s The Thyroid: a Fundamental and Clinical Text, Braverman, L.E., Utiger, R.D., Eds., Lippincott Williams & Wilkins: Philadelphia, 2005, 9th Ed., pp. 97–108.
  • Nadol’nik LI, Grivachevskii AS, Petushok NE, Khomich TI, Vinogradov VV. [Antioxidant system activities and lipid peroxidation in nodal and non-nodal thyroid tissue of patients operated in connection with euthyroid nodular goiter]. Biomed Khim 2006, 52, 403–412.
  • Lampka M, Junik R, Nowicka A, Kopczynska E, Tyrakowski T, Odrowaz-Sypniewska G. Oxidative stress markers during a course of hyperthyroidism. Endokrynol Pol 2006, 57, 218–222.
  • Vitale M, Di Matola T, D’Ascoli F, Salzano S, Bogazzi F, Fenzi G, Martino E, Rossi G. Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress. Endocrinology 2000, 141, 598–605.
  • Brzezinska-Slebodzinska E. Influence of hypothyroidism on lipid peroxidation, erythrocyte resistance and antioxidant plasma properties in rabbits. Acta Vet Hung 2003, 51, 343–351.
  • Gupta P, Kar A. Cadmium induced thyroid dysfunction in chicken: hepatic type I iodothyronine 5′-monodeiodinase activity and role of lipid peroxidation. Comp Biochem Physiol C, Pharmacol Toxicol Endocrinol 1999, 123, 39–44.
  • Maiti PK, Kar A. Dual role of testosterone in fenvalerate-treated mice with respect to thyroid function and lipid peroxidation. J Appl Toxicol 1997, 17, 127–131.
  • Kovacic P, Pozos RS, Draskovich CD. Unifying electrostatic mechanism for receptor-ligand activity. J Recept Signal Transduct Res 2007, 27, 411–431.
  • Zhang J, Lazar MA. The mechanism of action of thyroid hormones. Annu Rev Physiol 2000, 62, 439–466.
  • Lamirand A, Pallud-Mothré, S, Ramaugé, M, Pierre M, Courtin F. Oxidative stress regulates type 3 deiodinase and type 2 deiodinase in cultured rat astrocytes. Endocrinology 2008, 149, 3713–3721.
  • Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. Birth Defects Res C Embryo Today 2006, 78, 333–344.
  • Bianco AC, Larsen PR. Intracellular Pathways of Iodothyronine Metabolism. In Werner and Ingbar’s The Thyroid: a Fundamental and Clinical Text, Braverman, L.E., Utiger, R.D., Eds., Lippincott Williams & Wilkins: Philadelphia, 2005, 9th Ed., pp. 109–134.
  • Kovacic P. Simplifying the complexity of cell signaling in medicine and the life sciences: Radicals and electrochemistry. Med Hypotheses 2009, in press.
  • Incerpi S, Fiore AM, De Vito P, Pedersen JZ. Involvement of plasma membrane redox systems in hormone action. J Pharm Pharmacol 2007, 59, 1711–1720.
  • Kovacic P, Draskovich CD, Pozos RS. Unifying electrostatic mechanism for phosphates and sulfates in cell signaling. J Recept Signal Transduct Res 2007, 27, 433–443.
  • Kovacic P. Unifying electrostatic mechanism for metal cations in receptors and cell signaling. J Recept Signal Transduct Res 2008, 28, 153–161.
  • Lupachik SV, Nadol’nik LI, Netsetskaia ZV, Vinogradov VV. [Effects of chronic administration of high doses of potassium iodide on iodine metabolism in the rat thyroid gland]. Biomed Khim 2006, 52, 161–168.
  • Joanta AE, Filip A, Clichici S, Andrei S, Daicoviciu D. Iodide excess exerts oxidative stress in some target tissues of the thyroid hormones. Acta Physiol Hung 2006, 93, 347–359.
  • Allen EM. Acute iodine ingestion increases intrathyroidal glutathione. J Endocrinol Invest 1993, 16, 265–270.
  • Giray B, Hincal F. Oxidative DNA base damage, antioxidant enzyme activities and selenium status in highly iodine-deficient goitrous children. Free Radic Res 2002, 36, 55–62.
  • Baccarelli A, Giacomini SM, Corbetta C, Landi MT, Bonzini M, Consonni D, Grillo P, Patterson DG, Pesatori AC, Bertazzi PA. Neonatal thyroid function in Seveso 25 years after maternal exposure to dioxin. Plos Med 2008, 5, 161.
  • ten Tusscher GW, Guchelaar HJ, Koch J, Ilsen A, Vulsma T, Westra M, van der Slikke JW, Olie K, Koppe JG. Perinatal dioxin exposure, cytochrome P-450 activity, liver functions and thyroid hormones at follow-up after 7–12 years. Chemosphere 2008, 70, 1865–1872.
  • ten Tusscher GW, Koppe JG. Perinatal dioxin exposure and later effects–a review. Chemosphere 2004, 54, 1329–1336.
  • Senft AP, Dalton TP, Nebert DW, Genter MB, Hutchinson RJ, Shertzer HG. Dioxin increases reactive oxygen production in mouse liver mitochondria. Toxicol Appl Pharmacol 2002, 178, 15–21.
  • Giacomini SM, Hou L, Bertazzi PA, Baccarelli A. Dioxin effects on neonatal and infant thyroid function: routes of perinatal exposure, mechanisms of action and evidence from epidemiology studies. Int Arch Occup Environ Health 2006, 79, 396–404.
  • Nishimura N, Yonemoto J, Miyabara Y, Fujii-Kuriyama Y, Tohyama C. Altered thyroxin and retinoid metabolic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin in aryl hydrocarbon receptor-null mice. Arch Toxicol 2005, 79, 260–267.
  • Sewall CH, Flagler N, Vanden Heuvel JP, Clark GC, Tritscher AM, Maronpot RM, Lucier GW. Alterations in thyroid function in female Sprague-Dawley rats following chronic treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 1995, 132, 237–244.
  • Ron E. Thyroid cancer incidence among people living in areas contaminated by radiation from the Chernobyl accident. Health Phys 2007, 93, 502–511.
  • Lyon JL, Alder SC, Stone MB, Scholl A, Reading JC, Holubkov R, Sheng X, White GL Jr, Hegmann KT, Anspaugh L, Hoffman FO, Simon SL, Thomas B, Carroll R, Meikle AW. Thyroid disease associated with exposure to the Nevada nuclear weapons test site radiation: a reevaluation based on corrected dosimetry and examination data. Epidemiology 2006, 17, 604–614.
  • Kudo Y, Yamauchi K. In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis. Toxicol Sci 2005, 84, 29–37.
  • Kudo Y, Yamauchi K, Fukazawa H, Terao Y. In vitro and in vivo analysis of the thyroid system-disrupting activities of brominated phenolic and phenol compounds in Xenopus laevis. Toxicol Sci 2006, 92, 87–95.
  • Roelens SA, Beck V, Maervoet J, Aerts G, Reyns GE, Schepens P, Darras VM. The dioxin-like PCB 77 but not the ortho-substituted PCB 153 interferes with chicken embryo thyroid hormone homeostasis and delays hatching. Gen Comp Endocrinol 2005, 143, 1–9.
  • Vansell NR, Muppidi JR, Habeebu SM, Klaassen CD. Promotion of thyroid tumors in rats by pregnenolone-16alpha-carbonitrile (PCN) and polychlorinated biphenyl (PCB). Toxicol Sci 2004, 81, 50–59.
  • Ness DK, Schantz SL, Moshtaghian J, Hansen LG. Effects of perinatal exposure to specific PCB congeners on thyroid hormone concentrations and thyroid histology in the rat. Toxicol Lett 1993, 68, 311–323.
  • Rennie DP, McGregor AM, Wright J, Weetman AP, Hall R, Thorpe P. An immunotoxin of ricin A chain conjugated to thyroglobulin selectively suppresses the antithyroglobulin autoantibody response. Lancet 1983, 2, 1338–1340.
  • Shapiro S, Voelker J. Reduction of experimental neuroma formation with ricin. J Surg Res 1991, 51, 405–408.
  • Sadani GR, Soman CS, Deodhar KK, Nadkarni GD. Reactive oxygen species involvement in ricin-induced thyroid toxicity in rat. Hum Exp Toxicol 1997, 16, 254–256.
  • Gauger KJ, Giera S, Sharlin DS, Bansal R, Iannacone E, Zoeller RT. Polychlorinated biphenyls 105 and 118 form thyroid hormone receptor agonists after cytochrome P4501A1 activation in rat pituitary GH3 cells. Environ Health Perspect 2007, 115, 1623–1630.
  • Baranetsky NG, Chertow BS, Webb MD, Leonard RF, Sivitz WI. Combined phenytoin and salicylate effects on thyroid function tests. Arch Int Pharmacodyn Ther 1986, 284, 166–176.
  • Goussis OS, Theodoropoulos TJ. Dilantin and salicylate effects on hepatic thyroxine bio-availability and dialyzable thyroxine. Horm Metab Res 1990, 22, 342–344.
  • Lun’kova LK, Mkhitarov VA, Makarova OV, Kuzantsova LV. [Morphofunctional characteristics of the thyroid in drug addicts]. Arkh Patol 2006, 68, 35–38.
  • Chan V, Wang C, Yeung RT. Effects of heroin addiction on thyrotrophin, thyroid hormones and porlactin secretion in men. Clin Endocrinol (Oxf) 1979, 10, 557–565.
  • Brambilla F, Nobile P, Zanoboni A, Zanoboni-Muciaccia W, Meroni PL. Effects of chronic heroin addiction on pituitary-thyroid function in man. J Endocrinol Invest 1980, 3, 251–255.
  • Rasheed A, Tareen IA. Effects of heroin on thyroid function, cortisol and testosterone level in addicts. Pol J Pharmacol 1995, 47, 441–444.
  • Little JW. Thyroid disorders. Part II: hypothyroidism and thyroiditis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006, 102, 148–153.
  • Valeix P, Faure P, Bertrais S, Vergnaud AC, Dauchet L, Hercberg S. Effects of light to moderate alcohol consumption on thyroid volume and thyroid function. Clin Endocrinol (Oxf) 2008, 68, 988–995.
  • Kapoor D, Jones TH. Smoking and hormones in health and endocrine disorders. Eur J Endocrinol 2005, 152, 491–499.
  • Fortunato RS, Rosenthal D, Carvalho DP. [Abuse of anabolic steroids and its impact on thyroid function]. Arq Bras Endocrinol Metabol 2007, 51, 1417–1424.
  • Alèn M, Rahkila P, Reinilä, M, Vihko R. Androgenic-anabolic steroid effects on serum thyroid, pituitary and steroid hormones in athletes. Am J Sports Med 1987, 15, 357–361.
  • Seminara S, Stagi S, Candura L, Scrivano M, Lenzi L, Nanni L, Pagliai F, Chiarelli F. Changes of thyroid function during long-term hGH therapy in GHD children. A possible relationship with catch-up growth? Horm Metab Res 2005, 37, 751–756.
  • Malarkey WB, Strauss RH, Leizman DJ, Liggett M, Demers LM. Endocrine effects in female weight lifters who self-administer testosterone and anabolic steroids. Am J Obstet Gynecol 1991, 165, 1385–1390.
  • Deyssig R, Weissel M. Ingestion of androgenic-anabolic steroids induces mild thyroidal impairment in male body builders. J Clin Endocrinol Metab 1993, 76, 1069–1071.
  • Sand P, Madsen S. [Dnitrophenol–a dangerous doping agent]. Tidsskr Nor Laegeforen 2002, 122, 1363–1364.
  • Duntas LH. Oxidants, antioxidants in physical exercise and relation to thyroid function. Horm Metab Res 2005, 37, 572–576.
  • Leeuwenburgh C, Heinecke JW. Oxidative stress and antioxidants in exercise. Curr Med Chem 2001, 8, 829–838.
  • Rikihisa Y, Lin YC. Effect of gossypol on the thyroid in young rats. J Comp Pathol 1989, 100, 411–417.
  • Le Blanc M, Russo J, Kudelka AP, Smith JA. An in vitro study of inhibitory activity of gossypol, a cottonseed extract, in human carcinoma cell lines. Pharmacol Res 2002, 46, 551–555.
  • Kovacic P. Mechanism of drug and toxic actions of gossypol: focus on reactive oxygen species and electron transfer. Curr Med Chem 2003, 10, 2711–2718.
  • Brzozowska M, Kretowski A, Podkowicz K, Szmitkowski M, Borawska M, Kinalska I. Evaluation of influence of selenium, copper, zinc and iron concentrations on thyroid gland size in school children with normal ioduria. Pol Merkur Lekarski 2006, 20, 762–767.
  • Farkhutdinova LM, Speranskii VV, Gil’manov AZh. [Hair trace elements in patients with goiter]. Klin Lab Diagn 2006, 8, 19–21.
  • Zhang F, Liu N, Wang X, Zhu L, Chai Z. Study of trace elements in blood of thyroid disorder subjects before and after 131I therapy. Biol Trace Elem Res 2004, 97, 125–134.
  • Palazzolo DL, Jansen KP. The minimal arsenic concentration required to inhibit the activity of thyroid peroxidase activity in vitro. Biol Trace Elem Res 2008, 126, 49–55.
  • Davey JC, Nomikos AP, Wungjiranirun M, Sherman JR, Ingram L, Batki C, Lariviere JP, Hamilton JW. Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environ Health Perspect 2008, 116, 165–172.
  • Kotyzová, D, Eybl V, Mihaljevic M, Glattre E. Effect of long-term administration of arsenic (III) and bromine with and without selenium and iodine supplementation on the element level in the thyroid of rat. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005, 149, 329–333.
  • Allen T, Rana SV. Effect of n-propylthiouracil or thyroxine on arsenic trioxide toxicity in the liver of rat. J Trace Elem Med Biol 2007, 21, 194–203.
  • Allen T, Rana SV. Oxidative stress by inorganic arsenic: modulation by thyroid hormones in rat. Comp Biochem Physiol C Toxicol Pharmacol 2003, 135, 157–162.
  • Fröhlich E, Czarnocka B, Brossart P, Wahl R. Antitumor effects of arsenic trioxide in transformed human thyroid cells. Thyroid 2008, 18, 1183–1193.
  • Poncin S, Gérard AC, Boucquey M, Senou M, Calderon PB, Knoops B, Lengelé, B, Many MC, Colin IM. Oxidative stress in the thyroid gland: from harmlessness to hazard depending on the iodine content. Endocrinology 2008, 149, 424–433.
  • Burek CL, Rose NR. Autoimmune thyroiditis and ROS. Autoimmun Rev 2008, 7, 530–537.
  • Roy G, Mugesh G. Selenium analogues of antithyroid drugs–recent developments. Chem Biodivers 2008, 5, 414–439.
  • Bacic-Vrca V, Skreb F, Cepelak I, Mayer L, Kusic Z, Petres B. The effect of antioxidant supplementation on superoxide dismutase activity, Cu and Zn levels, and total antioxidant status in erythrocytes of patients with Graves’ disease. Clin Chem Lab Med 2005, 43, 383–388.
  • Resch U, Helsel G, Tatzber F, Sinzinger H. Antioxidant status in thyroid dysfunction. Clin Chem Lab Med 2002, 40, 1132–1134.
  • Guerra LN, Moiguer S, Karner M, de Molina MC, Sreider CM, Burdman JA. Antioxidants in the treatment of Graves’ disease. IUBMB Life 2001, 51, 105–109.
  • Borek C. Molecular mechanisms in cancer induction and prevention. Environ Health Perspect 1993, 101 Suppl 3, 237–245.
  • Borek C. Free-radical processes in multistage carcinogenesis. Free Radic Res Commun 1991, 12-13 Pt 2, 745–750.
  • Ito N, Hirose M, Fukushima S, Tsuda H, Shirai T, Tatematsu M. Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem Toxicol 1986, 24, 1071–1082.
  • Ito N, Hirose M, Fukushima S, Tsuda H, Tatematsu M, Asamoto M. Modifying effects of antioxidants on chemical carcinogenesis. Toxicol Pathol 1986, 14, 315–323.
  • Murugesan P, Muthusamy T, Balasubramanian K, Arunakaran J. Studies on the protective role of vitamin C and E against polychlorinated biphenyl (Aroclor 1254)–induced oxidative damage in Leydig cells. Free Radic Res 2005, 39, 1259–1272.
  • Deshpande UR, Joseph LJ, Patwardhan UN, Samuel AM. Effect of antioxidants (vitamin C, E and turmeric extract) on methimazole induced hypothyroidism in rats. Indian J Exp Biol 2002, 40, 735–738.
  • Soldin OP, Aschner M. Effects of manganese on thyroid hormone homeostasis: potential links. Neurotoxicology 2007, 28, 951–956.
  • Iwase K, Kato K, Otani S, Tsujimura T, Inagaki A, Miura K. [Study of the localization and the concentration of superoxide dismutase in various thyroid disorders]. Nippon Geka Gakkai Zasshi 1993, 94, 1112–1117.
  • Singh PP, Kumar P, Laloraya M. Regulation of superoxide anion radical-superoxide dismutase system in the avian thyroid by TSH with reference to thyroid hormonogenesis. Biochem Biophys Res Commun 1997, 239, 212–216.
  • Baraboi VA, Shestakova EN. [Selenium: the biological role and antioxidant activity]. Ukr Biokhim Zh 2004, 76, 23–32.
  • Vrca VB, Skreb F, Cepelak I, Romic Z, Mayer L. Supplementation with antioxidants in the treatment of Graves’ disease; the effect on glutathione peroxidase activity and concentration of selenium. Clin Chim Acta 2004, 341, 55–63.
  • Brzezinska-Slebodzinska E. Fever induced oxidative stress: the effect on thyroid status and the 5′-monodeiodinase activity, protective role of selenium and vitamin E. J Physiol Pharmacol 2001, 52, 275–284.
  • Venditti P, Pamplona R, Ayala V, De Rosa R, Caldarone G, Di Meo S. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage. J Exp Biol 2006, 209, 817–825.
  • Karbownik M, Lewinski A. Melatonin reduces Fenton reaction-induced lipid peroxidation in porcine thyroid tissue. J Cell Biochem 2003, 90, 806–811.
  • Mogulkoc R, Baltaci AK, Aydin L, Oztekin E, Tuncer I. Pinealectomy increases oxidant damage in kidney and testis caused by hyperthyroidism in rats. Cell Biochem Funct 2006, 24, 449–453.
  • Sahoo DK, Roy A, Bhanja S, Chainy GB. Hypothyroidism impairs antioxidant defence system and testicular physiology during development and maturation. Gen Comp Endocrinol 2008, 156, 63–70.
  • Chen G, Pekary AE, Sugawara M, Hershman JM. Effect of exogenous hydrogen peroxide on iodide transport and iodine organification in FRTL-5 rat thyroid cells. Acta Endocrinol 1993, 129, 89–96.
  • Ekholm R, Björkman U. Glutathione peroxidase degrades intracellular hydrogen peroxide and thereby inhibits intracellular protein iodination in thyroid epithelium. Endocrinology 1997, 138, 2871–2878.
  • Gredilla R, Barja G, López-Torres M. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart. Free Radic Res 2001, 35, 417–425.
  • Dasgupta A, Das S, Sarkar PK. Thyroid hormone promotes glutathione synthesis in astrocytes by up regulation of glutamate cysteine ligase through differential stimulation of its catalytic and modulator subunit mRNAs. Free Radic Biol Med 2007, 42, 617–626.
  • Nanda N, Bobby Z, Hamide A. Oxidative stress and protein glycation in primary hypothyroidism. Male/female difference. Clin Exp Med 2008, 8, 101–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.