372
Views
47
CrossRef citations to date
0
Altmetric
Review Article

Cardiac and neuroprotection regulated by α1-adrenergic receptor subtypes

&
Pages 98-110 | Received 09 Dec 2010, Accepted 18 Dec 2010, Published online: 21 Feb 2011

References

  • Graham RM, Lanier SM. Identification and characterization of alpha- adrenergic receptors. In: The Heart, and Cardiovascular System, Fozzard HA et al., eds. New York: Raven Press, 1986, chapter 50, pp. 1059–1095.
  • Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol 1948, 153, 586–600.
  • Morrow AL, Creese I. Characterization of alpha 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4104 and [3H]prazosin binding. Mol Pharmacol 1986, 29, 321–330.
  • Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK. Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc Natl Acad Sci USA 1988, 85, 7159–7163.
  • Schwinn DA, Lomasney JW, Lorenz W, Szklut PJ, Fremeau RT Jr, Yang-Feng TL, Caron MG, Lefkowitz RJ, Cotecchia S. Molecular cloning and expression of the cDNA for a novel alpha 1-adrenergic receptor subtype. J Biol Chem 1990, 265, 8183–8189.
  • Perez DM, Piascik MT, Malik N, Gaivin R, Graham RM. Cloning, expression, and tissue distribution of the rat homolog of the bovine alpha 1C-adrenergic receptor provide evidence for its classification as the alpha 1A subtype. Mol Pharmacol 1994, 46, 823–831.
  • Laz TM, Forray C, Smith KE, Bard JA, Vaysse PJ, Branchek TA, Weinshank RL. The rat homologue of the bovine alpha 1c-adrenergic receptor shows the pharmacological properties of the classical alpha 1A subtype. Mol Pharmacol 1994, 46, 414–422.
  • Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA, Yang-Feng TL, Brownstein M, Lefkowitz RJ, Caron MG. Molecular cloning and expression of the cDNA for the alpha 1A-adrenergic receptor. The gene for which is located on human chromosome 5. J Biol Chem 1991, 266, 6365–6369.
  • Perez DM, Piascik MT, Graham RM. Solution-phase library screening for the identification of rare clones: isolation of an alpha 1D-adrenergic receptor cDNA. Mol Pharmacol 1991, 40, 876–883.
  • Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo RR Jr. International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol Rev 1995, 47, 267–270.
  • Rokosh DG, Bailey BA, Stewart AF, Karns LR, Long CS, Simpson PC. Distribution of alpha 1C-adrenergic receptor mRNA in adult rat tissues by RNase protection assay and comparison with alpha 1B and alpha 1D. Biochem Biophys Res Commun 1994, 200, 1177–1184.
  • Scofield MA, Liu F, Abel PW, Jeffries WB. Quantification of steady state expression of mRNA for alpha-1 adrenergic receptor subtypes using reverse transcription and a competitive polymerase chain reaction. J Pharmacol Exp Ther 1995, 275, 1035–1042.
  • Bürger A, Benicke M, Deten A, Zimmer HG. Catecholamines stimulate interleukin-6 synthesis in rat cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2001, 281, H14–H21.
  • Lai KB, Sanderson JE, Yu CM. Suppression of collagen production in norepinephrine stimulated cardiac fibroblasts culture: differential effect of alpha and beta-adrenoreceptor antagonism. Cardiovasc Drugs Ther 2009, 23, 271–280.
  • Böhm M, Diet F, Feiler G, Kemkes B, Erdmann E. Alpha-adrenoceptors and alpha-adrenoceptor-mediated positive inotropic effects in failing human myocardium. J Cardiovasc Pharmacol 1988, 12, 357–364.
  • Landzberg JS, Parker JD, Gauthier DF, Colucci WS. Effects of myocardial alpha 1-adrenergic receptor stimulation and blockade on contractility in humans. Circulation 1991, 84, 1608–1614.
  • Skomedal T, Borthne K, Aass H, Geiran O, Osnes JB. Comparison between alpha-1 adrenoceptor-mediated and beta adrenoceptor-mediated inotropic components elicited by norepinephrine in failing human ventricular muscle. J Pharmacol Exp Ther 1997, 280, 721–729.
  • Wang H, Yang B, Zhang Y, Han H, Wang J, Shi H, Wang Z. Different subtypes of alpha1-adrenoceptor modulate different K+ currents via different signaling pathways in canine ventricular myocytes. J Biol Chem 2001, 276, 40811–40816.
  • O-Uchi J, Sasaki H, Morimoto S, Kusakari Y, Shinji H, Obata T, Hongo K, Komukai K, Kurihara S. Interaction of α1-adrenoceptor subtypes with different G proteins induces opposite effects on cardiac L-type Ca2+ channel. Circ Res 2008, 102, 1378–1388.
  • Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. J Clin Invest 1983, 72, 732–738.
  • Meidell RS, Sen A, Henderson SA, Slahetka MF, Chien KR. Alpha 1-adrenergic stimulation of rat myocardial cells increases protein synthesis. Am J Physiol 1986, 251, H1076–H1084.
  • Long CS, Kariya K, Karns L, Simpson PC. Sympathetic modulation of the cardiac myocyte phenotype: studies with a cell-culture model of myocardial hypertrophy. Basic Res Cardiol 1992, 87 (Suppl 2), 19–31.
  • Selvetella G, Hirsch E, Notte A, Tarone G, Lembo G. Adaptive and maladaptive hypertrophic pathways: points of convergence and divergence. Cardiovasc Res 2004, 63, 373–380.
  • Autelitano DJ, Woodcock EA. Selective activation of alpha1A-adrenergic receptors in neonatal cardiac myocytes is sufficient to cause hypertrophy and differential regulation of alpha1-adrenergic receptor subtype mRNAs. J Mol Cell Cardiol 1998, 30, 1515–1523.
  • Knowlton KU, Michel MC, Itani M, Shubeita HE, Ishihara K, Brown JH, Chien KR. The alpha 1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem 1993, 268, 15374–15380.
  • Rorabaugh BR, Ross SA, Gaivin RJ, Papay RS, McCune DF, Simpson PC, Perez DM. alpha1A— but not alpha1B—adrenergic receptors precondition the ischemic heart by a staurosporine-sensitive, chelerythrine-insensitive mechanism. Cardiovasc Res 2005, 65, 436–445.
  • Lin F, Owens WA, Chen S, Stevens ME, Kesteven S, Arthur JF, Woodcock EA, Feneley MP, Graham RM. Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 2001, 89, 343–350.
  • Du XJ, Gao XM, Kiriazis H, Moore XL, Ming Z, Su Y, Finch AM, Hannan RA, Dart AM, Graham RM. Transgenic alpha1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival. Cardiovasc Res 2006, 71, 735–743.
  • Chaulet H, Lin F, Guo J, Owens WA, Michalicek J, Kesteven SH, Guan Z, Prall OW, Mearns BM, Feneley MP, Steinberg SF, Graham RM. Sustained augmentation of cardiac alpha1A-adrenergic drive results in pathological remodeling with contractile dysfunction, progressive fibrosis and reactivation of matricellular protein genes. J Mol Cell Cardiol 2006, 40, 540–552.
  • Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T. Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation 1998, 98, 346–352.
  • Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J Jr, Müller W, Chien KR. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999, 97, 189–198.
  • Kunisada K, Negoro S, Tone E, Funamoto M, Osugi T, Yamada S, Okabe M, Kishimoto T, Yamauchi-Takihara K. Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci USA 2000, 97, 315–319.
  • Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, Ji L, Iwamoto Y, Li E, Schneider M, Russell KS, Fu XY. Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci USA 2003, 100, 12929–12934.
  • Milano CA, Dolber PC, Rockman HA, Bond RA, Venable ME, Allen LF, Lefkowitz RJ. Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 1994, 91, 10109–10113.
  • Wang BH, Du XJ, Autelitano DJ, Milano CA, Woodcock EA. Adverse effects of constitutively active alpha(1B)-adrenergic receptors after pressure overload in mouse hearts. Am J Physiol Heart Circ Physiol 2000, 279, H1079–H1086.
  • Grupp IL, Lorenz JN, Walsh RA, Boivin GP, Rindt H. Overexpression of alpha1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. Am J Physiol 1998, 275, H1338–H1350.
  • Benoit MJ, Rindt H, Allen BG. Cardiac-specific transgenic overexpression of alpha1B-adrenergic receptors induce chronic activation of ERK MAPK signalling. Biochem Cell Biol 2004, 82, 719–727.
  • Akhter SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, Lefkowitz RJ, Koch WJ. Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J Biol Chem 1997, 272, 21253–21259.
  • Iaccarino G, Keys JR, Rapacciuolo A, Shotwell KF, Lefkowitz RJ, Rockman HA, Koch WJ. Regulation of myocardial betaARK1 expression in catecholamine-induced cardiac hypertrophy in transgenic mice overexpressing alpha1B-adrenergic receptors. J Am Coll Cardiol 2001, 38, 534–540.
  • Zuscik MJ, Chalothorn D, Hellard D, Deighan C, McGee A, Daly CJ, Waugh DJ, Ross SA, Gaivin RJ, Morehead AJ, Thomas JD, Plow EF, McGrath JC, Piascik MT, Perez DM. Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the alpha 1B-adrenergic receptor. J Biol Chem 2001, 276, 13738–13743.
  • Vecchione C, Fratta L, Rizzoni D, Notte A, Poulet R, Porteri E, Frati G, Guelfi D, Trimarco V, Mulvany MJ, Agabiti-Rosei E, Trimarco B, Cotecchia S, Lembo G. Cardiovascular influences of alpha1b-adrenergic receptor defect in mice. Circulation 2002, 105, 1700–1707.
  • Bristow MR, Ginsburg R, Gilbert EM, Hershberger RE. Heterogeneous regulatory changes in cell surface membrane receptors coupled to a positive inotropic response in the failing human heart. Basic Res Cardiol 1987, 82 (Suppl 2), 369–376.
  • Steinfath M, Danielsen W, von der Leyen H, Mende U, Meyer W, Neumann J, Nose M, Reich T, Schmitz W, Scholz H. Reduced alpha 1- and beta 2-adrenoceptor-mediated positive inotropic effects in human end-stage heart failure. Br J Pharmacol 1992, 105, 463–469.
  • Iwai-Kanai E, Hasegawa K, Araki M, Kakita T, Morimoto T, Sasayama S. alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 1999, 100, 305–311.
  • Brodde OE. Beta- and alpha-adrenoceptor-agonists and -antagonists in chronic heart failure. Basic Res Cardiol 1990, 85 (Suppl 1), 57–66.
  • ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000, 283, 1967–1975.
  • Koshimizu TA, Tsujimoto G, Hirasawa A, Kitagawa Y, Tanoue A. Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc Res 2004, 63, 662–672.
  • Varma DR, Rindt H, Chemtob S, Mulay S. Mechanism of the negative inotropic effects of alpha 1-adrenoceptor agonists on mouse myocardium. Can J Physiol Pharmacol 2003, 81, 783–789.
  • Varma DR, Deng XF. Cardiovascular alpha1-adrenoceptor subtypes: functions and signaling. Can J Physiol Pharmacol 2000, 78, 267–292.
  • Wang GY, McCloskey DT, Turcato S, Swigart PM, Simpson PC, Baker AJ. Contrasting inotropic responses to alpha1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol Heart Circ Physiol 2006, 291, H2013–H2017.
  • Wang GY, Yeh CC, Jensen BC, Mann MJ, Simpson PC, Baker AJ. Heart failure switches the RV alpha1-adrenergic inotropic response from negative to positive. Am J Physiol Heart Circ Physiol 2010, 298, H913–H920.
  • Jensen BC, Swigart PM, De Marco T, Hoopes C, Simpson PC. {alpha}1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ Heart Fail 2009, 2, 654–663.
  • Grigore A, Poindexter B, Vaughn WK, Nussmeier N, Frazier OH, Cooper JR, Gregoric ID, Buja LM, Bick RJ. Alterations in alpha adrenoreceptor density and localization after mechanical left ventricular unloading with the Jarvik flowmaker left ventricular assist device. J Heart Lung Transplant 2005, 24, 609–613.
  • O’Connell TD, Swigart PM, Rodrigo MC, Ishizaka S, Joho S, Turnbull L, Tecott LH, Baker AJ, Foster E, Grossman W, Simpson PC. Alpha1-adrenergic receptors prevent a maladaptive cardiac response to pressure overload. J Clin Invest 2006, 116, 1005–1015.
  • Du XJ, Fang L, Gao XM, Kiriazis H, Feng X, Hotchkin E, Finch AM, Chaulet H, Graham RM. Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction. J Mol Cell Cardiol 2004, 37, 979–987.
  • Ross SA, Rorabaugh BR, Chalothorn D, Yun J, Gonzalez-Cabrera PJ, McCune DF, Piascik MT, Perez DM. The alpha(1B)-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc Res 2003, 60, 598–607.
  • Lemire I, Ducharme A, Tardif JC, Poulin F, Jones LR, Allen BG, Hébert TE, Rindt H. Cardiac-directed overexpression of wild-type alpha1B-adrenergic receptor induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2001, 281, H931–H938.
  • Rivard K, Trépanier-Boulay V, Rindt H, Fiset C. Electrical remodeling in a transgenic mouse model of alpha1B-adrenergic receptor overexpression. Am J Physiol Heart Circ Physiol 2009, 296, H704–H718.
  • Du XJ. Distinct role of adrenoceptor subtypes in cardiac adaptation to chronic pressure overload. Clin Exp Pharmacol Physiol 2008, 35, 355–360.
  • Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol 1985, 17, 291–306.
  • Mann DL, Kent RL, Parsons B, Cooper G 4th. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992, 85, 790–804.
  • Singh K, Communal C, Colucci WS. Inhibition of protein phosphatase 1 induces apoptosis in neonatal rat cardiac myocytes: role of adrenergic receptor stimulation. Basic Res Cardiol 2000, 95, 389–396.
  • Baghelai K, Graham LJ, Wechsler AS, Jakoi ER. Delayed myocardial preconditioning by alpha1-adrenoceptors involves inhibition of apoptosis. J Thorac Cardiovasc Surg 1999, 117, 980–986.
  • Huang Y, Wright CD, Merkwan CL, Baye NL, Liang Q, Simpson PC, O’Connell TD. An alpha1A-adrenergic-extracellular signal-regulated kinase survival signaling pathway in cardiac myocytes. Circulation 2007, 115, 763–772.
  • Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, Chien KR, Brown JH, Dorn GW 2nd. Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 1998, 95, 10140–10145.
  • Hilal-Dandan R, Kanter JR, Brunton LL. Characterization of G-protein signaling in ventricular myocytes from the adult mouse heart: differences from the rat. J Mol Cell Cardiol 2000, 32, 1211–1221.
  • Steinberg SF, Drugge ED, Bilezikian JP, Robinson RB. Acquisition by innervated cardiac myocytes of a pertussis toxin-specific regulatory protein linked to the alpha 1-receptor. Science 1985, 230, 186–188.
  • Rorabaugh BR, Gaivin RJ, Papay RS, Shi T, Simpson PC, Perez DM. Both alpha(1A)- and alpha(1B)-adrenergic receptors crosstalk to down regulate beta(1)-ARs in mouse heart: coupling to differential PTX-sensitive pathways. J Mol Cell Cardiol 2005, 39, 777–784.
  • Kurz T, Yamada KA, DaTorre SD, Corr PB. Alpha 1-adrenergic system and arrhythmias in ischaemic heart disease. Eur Heart J 1991, 12 (Suppl F), 88–98.
  • Bankwala Z, Hale SL, Kloner RA. Alpha-adrenoceptor stimulation with exogenous norepinephrine or release of endogenous catecholamines mimics ischemic preconditioning. Circulation 1994, 90, 1023–1028.
  • Banerjee A, Locke-Winter C, Rogers KB, Mitchell MB, Brew EC, Cairns CB, Bensard DD, Harken AH. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism. Circ Res 1993, 73, 656–670.
  • Hu K, Nattel S. Mechanisms of ischemic preconditioning in rat hearts. Involvement of alpha 1B-adrenoceptors, pertussis toxin-sensitive G proteins, and protein kinase C. Circulation 1995, 92, 2259–2265.
  • Kariya T, Minatoguchi S, Ohno T, Yamashita K, Uno Y, Arai M, Koshiji M, Fujiwara T, Fujiwara H. Infarct size-reducing effect of ischemic preconditioning is related to alpha1b-adrenoceptors but not to alpha1a-adrenoceptors in rabbits. J Cardiovasc Pharmacol 1997, 30, 437–445.
  • Gao H, Chen L, Yang HT. Activation of alpha1B-adrenoceptors alleviates ischemia/reperfusion injury by limitation of mitochondrial Ca2+ overload in cardiomyocytes. Cardiovasc Res 2007, 75, 584–595.
  • Xiao L, Jeffries WB. Kinetics of alkylation of cloned rat alpha1-adrenoceptor subtypes by chloroethylclonidine. Eur J Pharmacol 1998, 347, 319–327.
  • Amirahmadi F, Turnbull L, Du XJ, Graham RM, Woodcock EA. Heightened alpha1A-adrenergic receptor activity suppresses ischaemia/reperfusion-induced Ins(1,4,5)P3 generation in the mouse heart: a comparison with ischaemic preconditioning. Clin Sci 2008, 114, 157–164.
  • Gao XM, Wang BH, Woodcock E, Du XJ. Expression of active alpha(1B)-adrenergic receptors in the heart does not alleviate ischemic reperfusion injury. J Mol Cell Cardiol 2000, 32, 1679–1686.
  • Sah VP, Hoshijima M, Chien KR, Brown JH. Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J Biol Chem 1996, 271, 31185–31190.
  • Hines WA, Thorburn A. Ras and rho are required for Galphaq-induced hypertrophic gene expression in neonatal rat cardiac myocytes. J Mol Cell Cardiol 1998, 30, 485–494.
  • Appert-Collin A, Cotecchia S, Nenniger-Tosato M, Pedrazzini T, Diviani D. The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates alpha1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 2007, 104, 10140–10145.
  • Ramirez MT, Sah VP, Zhao XL, Hunter JJ, Chien KR, Brown JH. The MEKK–JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem 1997, 272, 14057–14061.
  • Sakata Y, Hoit BD, Liggett SB, Walsh RA, Dorn GW 2nd. Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice. Circulation 1998, 97, 1488–1495.
  • D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn GW 2nd. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 1997, 94, 8121–8126.
  • Gottshall KR, Hunter JJ, Tanaka N, Dalton N, Becker KD, Ross J Jr, Chien KR. Ras-dependent pathways induce obstructive hypertrophy in echo-selected transgenic mice. Proc Natl Acad Sci USA 1997, 94, 4710–4715.
  • Hunter JJ, Tanaka N, Rockman HA, Ross J Jr, Chien KR. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 1995, 270, 23173–23178.
  • Xiao L, Pimental DR, Amin JK, Singh K, Sawyer DB, Colucci WS. MEK1/2–ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 2001, 33, 779–787.
  • Wang L, Proud CG. Ras/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes. Circ Res 2002, 91, 821–829.
  • Wenham D, Rahmatullah RJ, Rahmatullah M, Hansen CA, Robishaw JD. Differential coupling of alpha1-adrenoreceptor subtypes to phospholipase C and mitogen activated protein kinase in neonatal rat cardiac myocytes. Eur J Pharmacol 1997, 339, 77–86.
  • Davidson SM, Townsend PA, Carroll C, Yurek-George A, Balasubramanyam K, Kundu TK, Stephanou A, Packham G, Ganesan A, Latchman DS. The transcriptional coactivator p300 plays a critical role in the hypertrophic and protective pathways induced by phenylephrine in cardiac cells but is specific to the hypertrophic effect of urocortin. Chembiochem 2005, 6, 162–170.
  • Rojas Gomez DM, Schulte JS, Mohr FW, Dhein S. Alpha-1-adrenoceptor subtype selective regulation of connexin 43 expression in rat cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 2008, 377, 77–85.
  • Morris JB, Kenney B, Huynh H, Woodcock EA. Regulation of the proapoptotic factor FOXO1 (FKHR) in cardiomyocytes by growth factors and alpha1-adrenergic agonists. Endocrinology 2005, 146, 4370–4376.
  • Zhou H-Z, Karliner JS, Zhu P, Mochly-Rosen D, Messing RO, Gray MO. Cardioprotection caused by ischemic preconditioning or by an α1-adrenergic receptor agonist is blocked in hearts from epsilon protein kinase C knockout mice. J Am Coll Cardiol 2002, 39, 299.
  • Wang Y, Ashraf M. Activation of alpha1-adrenergic receptor during Ca2+ pre-conditioning elicits strong protection against Ca2+ overload injury via protein kinase C signaling pathway. J Mol Cell Cardiol 1998, 30, 2423–2435.
  • Pucéat M, Hilal-Dandan R, Strulovici B, Brunton LL, Brown JH. Differential regulation of protein kinase C isoforms in isolated neonatal and adult rat cardiomyocytes. J Biol Chem 1994, 269, 16938–16944.
  • Guo J, Sabri A, Elouardighi H, Rybin V, Steinberg SF. Alpha1-adrenergic receptors activate AKT via a Pyk2/PDK-1 pathway that is tonically inhibited by novel protein kinase C isoforms in cardiomyocytes. Circ Res 2006, 99, 1367–1375.
  • Meng X, Brown JM, Ao L, Banerjee A, Harken AH. Norepinephrine induces cardiac heat shock protein 70 and delayed cardioprotection in the rat through alpha 1 adrenoceptors. Cardiovasc Res 1996, 32, 374–383.
  • Lacoste A, De Cian MC, Cueff A, Poulet SA. Noradrenaline and alpha-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells. J Cell Sci 2001, 114, 3557–3564.
  • Takahashi Y, Takemura S, Minamiyama Y, Shibata T, Hirai H, Sasaki Y, Sakaguchi M, Suehiro S. Landiolol has cardioprotective effects against reperfusion injury in the rat heart via the PKCepsilon signaling pathway. Free Radic Res 2007, 41, 757–769.
  • Serejo FC, Rodrigues LF Jr, da Silva Tavares KC, de Carvalho AC, Nascimento JH. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol 2007, 49, 214–220.
  • Foody JM, Farrell MH, Krumholz HM. beta-Blocker therapy in heart failure: scientific review. JAMA 2002, 287, 883–889.
  • Iversen LL, Iversen SD, Bloom FE, Roth RH. Catecholamines. In: Introduction to Neuropsychopharmacology. New York: Oxford University Press, 2009, pp. 150–213.
  • Ordway GA, Schwartz MA, Frazer A, eds. Part II. Norepinephrine and behavioral. In: Brain Norepinephrine. Cambridge: Cambridge University Press, 2007, pp. 157–298.
  • Ordway GA, Schwartz MA, Frazer A, eds. Part III. The biology of norepinephrine in CNS pathology. In: Brain Norepinephrine. Cambridge: Cambridge University Press, 2007, pp. 299–514.
  • Unnerstall JR, Fernandez I, Orensanz LM. The alpha-adrenergic receptor: radiohistochemical analysis of functional characteristics and biochemical differences. Pharmacol Biochem Behav 1985, 22, 859–874.
  • Domyancic AV, Morilak DA. Distribution of alpha1A adrenergic receptor mRNA in the rat brain visualized by in situ hybridization. J Comp Neurol 1997, 386, 358–378.
  • Jensen BC, Swigart PM, Simpson PC. Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn Schmiedebergs Arch Pharmacol 2009, 379, 409–412.
  • Palacios JM, Hoyer D, Cortés R. alpha 1-Adrenoceptors in the mammalian brain: similar pharmacology but different distribution in rodents and primates. Brain Res 1987, 419, 65–75.
  • Zilles K, Gross G, Schleicher A, Schildgen S, Bauer A, Bahro M, Schwendemann G, Zech K, Kolassa N. Regional and laminar distributions of alpha 1-adrenoceptors and their subtypes in human and rat hippocampus. Neuroscience 1991, 40, 307–320.
  • Papay R, Gaivin R, McCune DF, Rorabaugh BR, Macklin WB, McGrath JC, Perez DM. Mouse alpha1B-adrenergic receptor is expressed in neurons and NG2 oligodendrocytes. J Comp Neurol 2004, 478, 1–10.
  • Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA, Perez DM. Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol 2006, 497, 209–222.
  • Rokosh DG, Simpson PC. Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 2002, 99, 9474–9479.
  • Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, Mostardini M, Schmidt A, Beermann F, Cotecchia S. Decreased blood pressure response in mice deficient of the alpha1b-adrenergic receptor. Proc Natl Acad Sci USA 1997, 94, 11589–11594.
  • Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G. The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 2002, 109, 765–775.
  • Mouradian RD, Sessler FM, Waterhouse BD. Noradrenergic potentiation of excitatory transmitter action in cerebrocortical slices: evidence for mediation by an alpha 1 receptor-linked second messenger pathway. Brain Res 1991, 546, 83–95.
  • Gordon GR, Bains JS. Priming of excitatory synapses by alpha1 adrenoceptor-mediated inhibition of group III metabotropic glutamate receptors. J Neurosci 2003, 23, 6223–6231.
  • Marek GJ, Aghajanian GK. Alpha 1B-adrenoceptor-mediated excitation of piriform cortical interneurons. Eur J Pharmacol 1996, 305, 95–100.
  • Hirono M, Obata K. Alpha-adrenoceptive dual modulation of inhibitory GABAergic inputs to Purkinje cells in the mouse cerebellum. J Neurophysiol 2006, 95, 700–708.
  • Chen Q, Li DP, Pan HL. Presynaptic alpha1 adrenergic receptors differentially regulate synaptic glutamate and GABA release to hypothalamic presympathetic neurons. J Pharmacol Exp Ther 2006, 316, 733–742.
  • McCormick DA, Pape HC, Williamson A. Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog Brain Res 1991, 88, 293–305.
  • Bergles DE, Doze VA, Madison DV, Smith SJ. Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. J Neurosci 1996, 16, 572–585.
  • Kulik A, Haentzsch A, Lückermann M, Reichelt W, Ballanyi K. Neuron-glia signaling via alpha(1) adrenoceptor-mediated Ca(2+) release in Bergmann glial cells in situ. J Neurosci 1999, 19, 8401–8408.
  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000, 20, 9104–9110.
  • Kulkarni VA, Jha S, Vaidya VA. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur J Neurosci 2002, 16, 2008–2012.
  • Hiramoto T, Ihara Y, Watanabe Y. alpha-1 Adrenergic receptors stimulation induces the proliferation of neural progenitor cells in vitro. Neurosci Lett 2006, 408, 25–28.
  • Hiramoto T, Satoh Y, Takishima K, Watanabe Y. Induction of cell migration of neural progenitor cells in vitro by alpha-1 adrenergic receptor and dopamine D1 receptor stimulation. Neuroreport 2008, 19, 793–797.
  • Gupta MK, Papay RS, Jurgens CW, Gaivin RJ, Shi T, Doze VA, Perez DM. alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis. Mol Pharmacol 2009, 76, 314–326.
  • Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM. Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat Med 2000, 6, 1388–1394.
  • Stone EA, Zhang Y, Rosengarten H, Yeretsian J, Quartermain D. Brain alpha 1-adrenergic neurotransmission is necessary for behavioral activation to environmental change in mice. Neuroscience 1999, 94, 1245–1252.
  • Stone EA, Rosengarten H, Lin Y, Quartermain D. Pharmacological blockade of brain alpha1-adrenoceptors as measured by ex vivo [3H]prazosin binding is correlated with behavioral immobility. Eur J Pharmacol 2001, 420, 97–102.
  • Grenhoff J, Svensson TH. Prazosin modulates the firing pattern of dopamine neurons in rat ventral tegmental area. Eur J Pharmacol 1993, 233, 79–84.
  • Berretta N, Bernardi G, Mercuri NB. Alpha(1)-adrenoceptor-mediated excitation of substantia nigra pars reticulata neurons. Neuroscience 2000, 98, 599–604.
  • Stone EA, Lin Y, Itteera A, Quartermain D. Pharmacological evidence for the role of central alpha 1B-adrenoceptors in the motor activity and spontaneous movement of mice. Neuropharmacology 2001, 40, 254–261.
  • Knauber J, Müller WE. Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the alpha(1b)-adrenoceptor. Eur Neuropsychopharmacol 2000, 10, 423–427.
  • Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP. Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 2002, 22, 2873–2884.
  • Auclair A, Cotecchia S, Glowinski J, Tassin JP. D-amphetamine fails to increase extracellular dopamine levels in mice lacking alpha 1b-adrenergic receptors: relationship between functional and nonfunctional dopamine release. J Neurosci 2002, 22, 9150–9154.
  • Wada T, Hasegawa Y, Ono H. Characterization of alpha1-adrenoceptor subtypes in facilitation of rat spinal motoneuron activity. Eur J Pharmacol 1997, 340, 45–52.
  • Papay R, Zuscik MJ, Ross SA, Yun J, McCune DF, Gonzalez-Cabrera P, Gaivin R, Drazba J, Perez DM. Mice expressing the alpha(1B)-adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J Neurochem 2002, 83, 623–634.
  • Collette KM, Hurtt CC, Perez DM, Doze VA. Chronic α1A-adrenergic receptor stimulation increases lifespan in mice. FASEB J 2011, in press.
  • Pussinen R, Nieminen S, Koivisto E, Haapalinna A, Riekkinen P Sr, Sirvio J. Enhancement of intermediate-term memory by an alpha-1 agonist or a partial agonist at the glycine site of the NMDA receptor. Neurobiol Learn Mem 1997, 67, 69–74.
  • Pussinen R, Sirviö J. Minor role for alpha1-adrenoceptors in the facilitation of induction and early maintenance of long-term potentiation in the CA1 field of the hippocampus. J Neurosci Res 1998, 51, 309–315.
  • Miyashita T, Williams CL. Enhancement of noradrenergic neurotransmission in the nucleus of the solitary tract modulates memory storage processes. Brain Res 2003, 987, 164–175.
  • Arnsten AFT. Norepinephrine and cognitive disorders. In: Ordway GA, Schwartz MA, Frazer A, eds., Brain Norepinephrine. Cambridge: Cambridge University Press, 2007, pp. 408–435.
  • Mao ZM, Arnsten AF, Li BM. Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol Psychiatry 1999, 46, 1259–1265.
  • Gibbs ME, Summers RJ. Stimulation of alpha1-adrenoceptors inhibits memory consolidation in the chick. Eur J Neurosci 2001, 14, 1369–1376.
  • Goldenstein B, Jurgens C, Knudson C, Lichter J, Carr P, Perez D, Doze V. α1-Adrenergic receptor regulation of seizures and neurodegeneration. FASEB J, 2008, 22, 748.12.
  • Hong CJ, Wang YC, Liu TY, Liu HC, Tsai SJ. A study of alpha-adrenoceptor gene polymorphisms and Alzheimer disease. J Neural Transm 2001, 108, 445–450.
  • Klingner M, Apelt J, Kumar A, Sorger D, Sabri O, Steinbach J, Scheunemann M, Schliebs R. Alterations in cholinergic and non-cholinergic neurotransmitter receptor densities in transgenic Tg2576 mouse brain with beta-amyloid plaque pathology. Int J Dev Neurosci 2003, 21, 357–369.
  • Lapiz MD, Morilak DA. Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience 2006, 137, 1039–1049.
  • Kalaria RN. Characterization of [125I]HEAT binding to alpha 1-receptors in human brain: assessment in aging and Alzheimer’s disease. Brain Res 1989, 501, 287–294.
  • Shimohama S, Taniguchi T, Fujiwara M, Kameyama M. Biochemical characterization of alpha-adrenergic receptors in human brain and changes in Alzheimer-type dementia. J Neurochem 1986, 47, 1295–1301.
  • Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. Changes in adrenoreceptors in the prefrontal cortex of subjects with dementia: evidence of compensatory changes. Neuroscience 2007, 146, 471–480.
  • Izumi Y, Zorumski CF. Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse 1999, 31, 196–202.
  • Katsuki H, Izumi Y, Zorumski CF. Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. J Neurophysiol 1997, 77, 3013–3020.
  • Scheiderer CL, Dobrunz LE, McMahon LL. Novel form of long-term synaptic depression in rat hippocampus induced by activation of alpha 1 adrenergic receptors. J Neurophysiol 2004, 91, 1071–1077.
  • Stone EA, Quartermain D. Alpha-1-noradrenergic neurotransmission, corticosterone, and behavioral depression. Biol Psychiatry 1999, 46, 1287–1300.
  • Doze VA, Handel EM, Jensen KA, Darsie B, Luger EJ, Haselton JR, Talbot JN, Rorabaugh BR. Alpha(1A)- and alpha(1B)-adrenergic receptors differentially modulate antidepressant-like behavior in the mouse. Brain Res 2009, 1285, 148–157.
  • Collette K, Fagerlie R, Haselton J, Perez DM, Doze V. Norepinephrine, through activation of α1A-ARs, stimulates production of new neurons, leading to an alleviation of depression and anxiety. FASEB J 2010, 24, 1058.7.
  • Wood S, Luger E, Bethany Davis B, Haselton J, Perez D, Doze V. Chronic α1A-adrenergic receptor stimulation reduces anxiety in mice. FASEB J 2010, 24, 768.6.
  • Aroniadou-Anderjaska V, Qashu F, Braga MF. Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: implications for epilepsy and anxiety disorders. Amino Acids 2007, 32, 305–315.
  • Weinshenker D, Szot P. The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 2002, 94, 213–233.
  • Giorgi FS, Pizzanelli C, Biagioni F, Murri L, Fornai F. The role of norepinephrine in epilepsy: from the bench to the bedside. Neurosci Biobehav Rev 2004, 28, 507–524.
  • Löscher W, Czuczwar SJ. Comparison of drugs with different selectivity for central alpha 1-and alpha 2-adrenoceptors in animal models of epilepsy. Epilepsy Res 1987, 1, 165–172.
  • Neuman RS. Suppression of penicillin-induced focal epileptiform activity by locus ceruleus stimulation: mediation by an alpha 1-adrenoceptor. Epilepsia 1986, 27, 359–366.
  • Wu HQ, Tullii M, Samanin R, Vezzani A. Norepinephrine modulates seizures induced by quinolinic acid in rats: selective and distinct roles of alpha-adrenoceptor subtypes. Eur J Pharmacol 1987, 138, 309–318.
  • Stanton PK. Noradrenergic modulation of epileptiform bursting and synaptic plasticity in the dentate gyrus. Epilepsy Res Suppl 1992, 7, 135–150.
  • Ferry B, Magistretti PJ, Pralong E. Noradrenaline modulates glutamate-mediated neurotransmission in the rat basolateral amygdala in vitro. Eur J Neurosci 1997, 9, 1356–1364.
  • Yan QS, Dailey JW, Steenbergen JL, Jobe PC. Anticonvulsant effect of enhancement of noradrenergic transmission in the superior colliculus in genetically epilepsy-prone rats (GEPRs): a microinjection study. Brain Res 1998, 780, 199–209.
  • Weinshenker D, Szot P, Miller NS, Palmiter RD. Alpha(1) and beta(2) adrenoreceptor agonists inhibit pentylenetetrazole-induced seizures in mice lacking norepinephrine. J Pharmacol Exp Ther 2001, 298, 1042–1048.
  • Gellman RL, Aghajanian GK. Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res 1993, 600, 63–73.
  • Braga MF, Aroniadou-Anderjaska V, Manion ST, Hough CJ, Li H. Stress impairs alpha(1A) adrenoceptor-mediated noradrenergic facilitation of GABAergic transmission in the basolateral amygdala. Neuropsychopharmacology 2004, 29, 45–58.
  • Alreja M, Liu W. Noradrenaline induces IPSCs in rat medial septal/diagonal band neurons: involvement of septohippocampal GABAergic neurons. J Physiol (Lond) 1996, 494 (Pt 1), 201–215.
  • Kawaguchi Y, Shindou T. Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J Neurosci 1998, 18, 6963–6976.
  • Hillman KL, Lei S, Doze VA, Porter JE. Alpha-1A adrenergic receptor activation increases inhibitory tone in CA1 hippocampus. Epilepsy Res 2009, 84, 97–109.
  • Hillman KL, Knudson CA, Carr PA, Doze VA, Porter JE. Adrenergic receptor characterization of CA1 hippocampal neurons using real time single cell RT-PCR. Brain Res Mol Brain Res 2005, 139, 267–276.
  • Hillman KL, Doze VA, Porter JE. Alpha1A-adrenergic receptors are functionally expressed by a subpopulation of cornu ammonis 1 interneurons in rat hippocampus. J Pharmacol Exp Ther 2007, 321, 1062–1068.
  • Jurgens CWD, Knudson CA, Carr PA, Perez DM, Doze VA. α1-Adrenergic receptor regulation of interneuron function. FASEB J 2009, 23, 946.4.
  • Kunieda T, Zuscik MJ, Boongird A, Perez DM, Lüders HO, Najm IM. Systemic overexpression of the alpha 1B-adrenergic receptor in mice: an animal model of epilepsy. Epilepsia 2002, 43, 1324–1329.
  • Yun J, Gaivin RJ, McCune DF, Boongird A, Papay RS, Ying Z, Gonzalez-Cabrera PJ, Najm I, Perez DM. Gene expression profile of neurodegeneration induced by alpha1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. Brain 2003, 126, 2667–2681.
  • Pizzanelli C, Lazzeri G, Fulceri F, Giorgi FS, Pasquali L, Cifelli G, Murri L, Fornai F. Lack of alpha 1b-adrenergic receptor protects against epileptic seizures. Epilepsia 2009, 50 (Suppl 1), 59–64.
  • Knudson CA, Carr PA, Perez DM, Doze VA. α1A-Adrenergic receptor overexpression protects hippocampal interneurons. FASEB J 2007, 21, A1209 (896.6).
  • Cohen BM, Lipinski JF. In vivo potencies of antipsychotic drugs in blocking α1-noradrenergic and dopamine D2 receptors: implications for drug mechanisms of action. Life Sci 1986, 147, 1194–1198.
  • Baldessarini RJ, Huston-Lyons D, Campbell A, Marsh E, Cohen BM. Do central antiadrenergic actions contribute to the atypical properties of clozapine? Br J Psychiatry Suppl 1992, 12–16.
  • Saiz PA, Susce MT, Clark DA, Kerwin RW, Molero P, Arranz MJ, de Leon J. An investigation of the alpha1A-adrenergic receptor gene and antipsychotic-induced side-effects. Hum Psychopharmacol 2008, 23, 107–114.
  • Ma J, Ye N, Cohen BM. Expression of noradrenergic alpha1, serotoninergic 5HT2a and dopaminergic D2 receptors on neurons activated by typical and atypical antipsychotic drugs. Prog Neuropsychopharmacol Biol Psychiatry 2006, 30, 647–657.
  • Sleight AJ, Koek W, Bigg DC. Binding of antipsychotic drugs at alpha 1A- and alpha 1B-adrenoceptors: risperidone is selective for the alpha 1B-adrenoceptors. Eur J Pharmacol 1993, 238, 407–410.
  • Cahir M, King DJ. Antipsychotics lack alpha 1A/B adrenoceptor subtype selectivity in the rat. Eur Neuropsychopharmacol 2005, 15, 231–234.
  • Cahir M, Mawhinney T, King DJ. Differential region-specific regulation of central alpha 1-adrenoceptor binding following chronic haloperidol and clozapine administration in the rat. Psychopharmacology (Berl) 2004, 172, 196–201.
  • Keilhoff G, Grecksch G, Bernstein HG, Roskoden T, Becker A. Risperidone and haloperidol promote survival of stem cells in the rat hippocampus. Eur Arch Psychiatry Clin Neurosci 2010, 260, 151–162.
  • Clark DA, Arranz MJ, Mata I, Lopéz-Ilundain J, Pérez-Nievas F, Kerwin RW. Polymorphisms in the promoter region of the alpha1A-adrenoceptor gene are associated with schizophrenia/schizoaffective disorder in a Spanish isolate population. Biol Psychiatry 2005, 58, 435–439.
  • Manji HK, McNamara R, Chen G, Lenox RH. Signalling pathways in the brain: cellular transduction of mood stabilisation in the treatment of manic-depressive illness. Aust N Z J Psychiatry 1999, 33 (Suppl), S65–S83.
  • Volk DW, Eggan SM, Lewis DA. Alterations in metabotropic glutamate receptor 1a and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry 2010, 167, 1489–1498.
  • Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001, 6, 293–301.
  • Prasad KM, Chowdari KV, Nimgaonkar VL, Talkowski ME, Lewis DA, Keshavan MS. Genetic polymorphisms of the RGS4 and dorsolateral prefrontal cortex morphometry among first episode schizophrenia patients. Mol Psychiatry 2005, 10, 213–219.
  • Erdely HA, Tamminga CA, Roberts RC, Vogel MW. Regional alterations in RGS4 protein in schizophrenia. Synapse 2006, 59, 472–479.
  • Ding L, Hegde AN. Expression of RGS4 splice variants in dorsolateral prefrontal cortex of schizophrenic and bipolar disorder patients. Biol Psychiatry 2009, 65, 541–545.
  • Hague C, Bernstein LS, Ramineni S, Chen Z, Minneman KP, Hepler JR. Selective inhibition of alpha1A-adrenergic receptor signaling by RGS2 association with the receptor third intracellular loop. J Biol Chem 2005, 280, 27289–27295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.