363
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Structure–function relationships of the human bitter taste receptor hTAS2R1: insights from molecular modeling studies

, , , &
Pages 229-240 | Received 12 Mar 2011, Accepted 01 Apr 2011, Published online: 27 May 2011

Reference

  • Meyerhof W. Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol 2005, 154, 37–72.
  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell 2000, 100, 693–702.
  • Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ. T2Rs function as bitter taste receptors. Cell 2000, 100, 703–711.
  • Matsunami H, Montmayeur JP, Buck LB. A family of candidate taste receptors in human and mouse. Nature 2000, 404, 601–604.
  • Brockhoff A, Behrens M, Massarotti A, Appendino G, Meyerhof W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J Agric Food Chem 2007, 55, 6236–6243.
  • Maehashi K, Matano M, Wang H, Vo LA, Yamamoto Y, Huang L. Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochem Biophys Res Commun 2008, 365, 851–855.
  • Pronin AN, Xu H, Tang H, Zhang L, Li Q, Li X. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Curr Biol 2007, 17, 1403–1408.
  • Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 2010, 35, 157–170.
  • Fanelli F, De Benedetti PG. Computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2005, 105, 3297–3351.
  • Patny A, Desai PV, Avery MA. Homology modeling of G-protein-coupled receptors and implications in drug design. Curr Med Chem 2006, 13, 1667–1691.
  • Kobilka BK. G protein coupled receptor structure and activation. Biochim Biophys Acta 2007, 1768, 794–807.
  • Hanson MA, Stevens RC. Discovery of new GPCR biology: one receptor structure at a time. Structure 2009, 17, 8–14.
  • Floriano WB, Hall S, Vaidehi N, Kim U, Drayna D, Goddard WA 3rd. Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J Mol Model 2006, 12, 931–941.
  • Miguet L, Zhang Z, Grigorov MG. Computational studies of ligand-receptor interactions in bitter taste receptors. J Recept Signal Transduct Res 2006, 26, 611–630.
  • Brockhoff A, Behrens M, Niv MY, Meyerhof W. Structural requirements of bitter taste receptor activation. Proc Natl Acad Sci USA 2010, 107, 11110–11115.
  • Biarnés X, Marchiori A, Giorgetti A, Lanzara C, Gasparini P, Carloni P, Born S, Brockhoff A, Behrens M, Meyerhof W. Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS ONE 2010, 5, e12394.
  • Sakurai T, Misaka T, Ishiguro M, Masuda K, Sugawara T, Ito K, Kobayashi T, Matsuo S, Ishimaru Y, Asakura T, Abe K. Characterization of the beta-D-glucopyranoside binding site of the human bitter taste receptor hTAS2R16. J Biol Chem 2010, 285, 28373–28378.
  • Bhattacharya S, Hall SE, Vaidehi N. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. J Mol Biol 2008, 382, 539–555.
  • Chen J, Brooks CL 3rd. Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins 2007, 67, 922–930.
  • Fan H, Mark AE. Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci 2004, 13, 211–220.
  • Chipot C. Milestones in the activation of a G protein-coupled receptor. Insights from molecular-dynamics simulations into the human cholecystokinin receptor-1. J Chem Theory Comput 2008, 4, 2150–2159.
  • Jardón-Valadez E, Ulloa-Aguirre A, Piñeiro A. Modeling and molecular dynamics simulation of the human gonadotropin-releasing hormone receptor in a lipid bilayer. J Phys Chem B 2008, 112, 10704–10713.
  • Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S, Shaw DE. Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci USA 2009, 106, 4689–4694.
  • Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008, 9, Article no. 40.
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004, 25, 1605–1612.
  • Morris GM, Goodsell DS, Halliday RS, Huey R, Har WE, Belew RK, Olson AJ. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998, 19, 1639–1662.
  • Hetényi C, van der Spoel D. Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 2002, 11, 1729–1737.
  • Hetényi C, van der Spoel D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett 2006, 580, 1447–1450.
  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem 2005, 26, 1781–1802.
  • Schlenkrich M, Brickmann J, Mackerell Jr AD, Karplus M. An empirical potential energy function for phospholipids: criteria for parameter optimization and applications. In: Merz KM and Roux B (eds), Biological Membranes: A Molecular Perspective from Computation and Experiment. Birkhauser Boston, 1996, pp. 31–81.
  • MacKerell Jr AD, Bashford D, Bellott Dunbrack, RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FT, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998, 102, 3586–3616.
  • Feller SE, MacKerell Jr AD. An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 2000, 104, 7510–7515.
  • Cordomí A, Perez JJ. Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers. J Phys Chem B 2007, 111, 7052–7063.
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995, 103, 8577–8593.
  • Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys 1994, 101, 4177–4189.
  • Feller SE, Zhang Y, Pastor RW, Brooks BR. Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 1995, 103, 4613–4621.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996, 14, 33–8, 27.
  • Mezei M, Filizola M. TRAJELIX: a computational tool for the geometric characterization of protein helices during molecular dynamics simulations. J Comput Aided Mol Des 2006, 20, 97–107.
  • Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci USA 2002, 99, 5982–5987.
  • Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 2004, 342, 571–583.
  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745.
  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007, 318, 1258–1265.
  • Mirzadegan T, Benkö G, Filipek S, Palczewski K. Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 2003, 42, 2759–2767.
  • Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008, 7, 339–357.
  • Zhang Y. About I-TASSER server. Available at: http://zhanglab.ccmb.med.umich.edu/i-tasser/about.html. Accessed 20 April 2011
  • Yarnitzky T, Levit A, Niv MY. Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr Opin Drug Discov Devel 2010, 13, 317–325.
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32, 1792–1797.
  • Wang T, Duan Y. Ligand entry and exit pathways in the beta2-adrenergic receptor. J Mol Biol 2009, 392, 1102–1115.
  • Moro O, Lameh J, Högger P, Sadée W. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J Biol Chem 1993, 268, 22273–22276.
  • Peeters MC, van Westen GJ, Li Q, Ijzerman AP. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci 2011, 32, 35–42.
  • Unal H, Jagannathan R, Bhat MB, Karnik SS. Ligand-specific conformation of extracellular loop-2 in the angiotensin II type 1 receptor. J Biol Chem 2010, 285, 16341–16350.
  • Shan J, Weinstein H, Mehler EL. Probing the structural determinants for the function of intracellular loop 2 in structurally cognate G-protein-coupled receptors. Biochemistry 2010, 49, 10691–10701.
  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 2008, 454, 486–491.
  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008, 322, 1211–1217.
  • Asao M, Iwamura H, Akamatsu M, Fujita T. Quantitative structure-activity relationships of the bitter thresholds of amino acids, peptides, and their derivatives. J Med Chem 1987, 30, 1873–1879.
  • Ahuja S, Smith SO. Multiple switches in G protein-coupled receptor activation. Trends Pharmacol Sci 2009, 30, 494–502.
  • Burstein ES, Spalding TA, Brann MR. The second intracellular loop of the m5 muscarinic receptor is the switch which enables G-protein coupling. J Biol Chem 1998, 273, 24322–24327.
  • Gáborik Z, Jagadeesh G, Zhang M, Spät A, Catt KJ, Hunyady L. The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling. Endocrinology 2003, 144, 2220–2228.
  • Angelova K, Fanelli F, Puett D. Contributions of intracellular loops 2 and 3 of the lutropin receptor in Gs coupling. Mol Endocrinol 2008, 22, 126–138.
  • Hu J, Wang Y, Zhang X, Lloyd JR, Li JH, Karpiak J, Costanzi S, Wess J. Structural basis of G protein-coupled receptor-G protein interactions. Nat Chem Biol 2010, 6, 541–548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.