271
Views
16
CrossRef citations to date
0
Altmetric
Review Article

The signaling pathways of LMX1B and its role in glomerulosclerosis

&
Pages 285-289 | Received 05 Apr 2012, Accepted 04 Sep 2012, Published online: 09 Oct 2012

References

  • Dreyer SD, Morello R, German MS, Zabel B, Winterpacht A, Lunstrum GP, Horton WA, Oberg KC, Lee B. LMX1B transactivation and expression in nail-patella syndrome. Hum Mol Genet 2000, 9, 1067–1074.
  • Feenstra JM, Kanaya K, Pira CU, Hoffman SE, Eppey RJ, Oberg KC. Detection of genes regulated by Lmx1b during limb dorsalization. Dev Growth Differ 2012, 54, 451–462.
  • Marini M, Giacopelli F, Seri M, Ravazzolo R. Interaction of the LMX1B and PAX2 gene products suggests possible molecular basis of differential phenotypes in Nail-Patella syndrome. Eur J Hum Genet 2005, 13, 789–792.
  • McIntosh I, Dunston JA, Liu L, Hoover-Fong JE, Sweeney E. Nail patella syndrome revisited: 50 years after linkage. Ann Hum Genet 2005, 69, 349–363.
  • Sweeney E, Fryer A, Mountford R, Green A, McIntosh I. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet 2003, 40, 153–162.
  • Sato U, Kitanaka S, Sekine T, Takahashi S, Ashida A, Igarashi T. Functional characterization of LMX1B mutations associated with nail-patella syndrome. Pediatr Res 2005, 57, 783–788.
  • Vollrath D, Jaramillo-Babb VL, Clough MV, McIntosh I, Scott KM, Lichter PR, Richards JE. Loss-of-function mutations in the LIM-homeodomain gene, LMX1B, in nail-patella syndrome. Hum Mol Genet 1998, 7, 1091–1098.
  • Mimiwati Z, Mackey DA, Craig JE, Mackinnon JR, Rait JL, Liebelt JE, Ayala-Lugo R, Vollrath D, Richards JE. Nail-patella syndrome and its association with glaucoma: a review of eight families. Br J Ophthalmol 2006, 90, 1505–1509.
  • Park S, Jamshidi Y, Vaideanu D, Bitner-Glindzicz M, Fraser S, Sowden JC. Genetic risk for primary open-angle glaucoma determined by LMX1B haplotypes. Invest Ophthalmol Vis Sci 2009, 50, 1522–1530.
  • Romero P, Sanhueza F, Lopez P, Reyes L, Herrera L. c.194 A>C (Q65P) mutation in the LMX1B gene in patients with nail-patella syndrome associated with glaucoma. Mol Vis 2011, 17, 1929–1939.
  • Bergman O, Håkansson A, Westberg L, Belin AC, Sydow O, Olson L, Holmberg B, Fratiglioni L, Bäckman L, Eriksson E, Nissbrandt H. Do polymorphisms in transcription factors LMX1A and LMX1B influence the risk for Parkinson’s disease? J Neural Transm 2009, 116, 333–338.
  • Schlaubitz S, Yatsenko SA, Smith LD, Keller KL, Vissers LE, Scott DA, Cai WW, Reardon W, Abdul-Rahman OA, Lammer EJ, Lifchez CA, Magenis E, Veltman JA, Stankiewicz P, Zabel BU, Lee B. Ovotestes and XY sex reversal in a female with an interstitial 9q33.3-q34.1 deletion encompassing NR5A1 and LMX1B causing features of Genitopatellar syndrome. Am J Med Genet A 2007, 143A, 1071–1081.
  • Morello R, Zhou G, Dreyer SD, Harvey SJ, Ninomiya Y, Thorner PS, Miner JH, Cole W, Winterpacht A, Zabel B, Oberg KC, Lee B. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nat Genet 2001, 27, 205–208.
  • Morello R, Lee B. Insight into podocyte differentiation from the study of human genetic disease: nail-patella syndrome and transcriptional regulation in podocytes. Pediatr Res 2002, 51, 551–558.
  • Lin W, Metzakopian E, Mavromatakis YE, Gao N, Balaskas N, Sasaki H, Briscoe J, Whitsett JA, Goulding M, Kaestner KH, Ang SL. Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev Biol 2009, 333, 386–396.
  • Asbreuk CH, Vogelaar CF, Hellemons A, Smidt MP, Burbach JP. CNS expression pattern of Lmx1b and coexpression with ptx genes suggest functional cooperativity in the development of forebrain motor control systems. Mol Cell Neurosci 2002, 21, 410–420.
  • Dai JX, Hu ZL, Shi M, Guo C, Ding YQ. Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system. J Comp Neurol 2008, 509, 341–355.
  • German MS, Wang J, Chadwick RB, Rutter WJ. Synergistic activation of the insulin gene by a LIM-homeo domain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes Dev 1992, 6, 2165–2176.
  • Johnson JD, Zhang W, Rudnick A, Rutter WJ, German MS. Transcriptional synergy between LIM-homeodomain proteins and basic helix-loop-helix proteins: the LIM2 domain determines specificity. Mol Cell Biol 1997, 17, 3488–3496.
  • Marini M, Bongers EM, Cusano R, Di Duca M, Seri M, Knoers NV, Ravazzolo R. Confirmation of CLIM2/LMX1B interaction by yeast two-hybrid screening and analysis of its involvement in nail-patella syndrome. Int J Mol Med 2003, 12, 79–82.
  • Suleiman H, Heudobler D, Raschta AS, Zhao Y, Zhao Q, Hertting I, Vitzthum H, Moeller MJ, Holzman LB, Rachel R, Johnson R, Westphal H, Rascle A, Witzgall R. The podocyte-specific inactivation of Lmx1b, Ldb1 and E2a yields new insight into a transcriptional network in podocytes. Dev Biol 2007, 304, 701–712.
  • Nakatani T, Kumai M, Mizuhara E, Minaki Y, Ono Y. Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev Biol 2010, 339, 101–113.
  • Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 1995, 83, 631–640.
  • Vogel A, Rodriguez C, Warnken W, Izpisúa Belmonte JC. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 1995, 378, 716–720.
  • Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, Gan L, Lee B, Johnson RL. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet 1998, 19, 51–55.
  • Adamska M, Billi AC, Cheek S, Meisler MH. Genetic interaction between Wnt7a and Lrp6 during patterning of dorsal and posterior structures of the mouse limb. Dev Dyn 2005, 233, 368–372.
  • Hill TP, Taketo MM, Birchmeier W, Hartmann C. Multiple roles of mesenchymal beta-catenin during murine limb patterning. Development 2006, 133, 1219–1229.
  • Chizhikov VV, Millen KJ. Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J Neurosci 2004, 24, 5694–5703.
  • Liu ZR, Shi M, Hu ZL, Zheng MH, Du F, Zhao G, Ding YQ. A refined map of early gene expression in the dorsal rhombomere 1 of mouse embryos. Brain Res Bull 2010, 82, 74–82.
  • Dolmazon V, Alenina N, Markossian S, Mancip J, van de Vrede Y, Fontaine E, Dehay C, Kennedy H, Bader M, Savatier P, Bernat A. Forced expression of LIM homeodomain transcription factor 1b enhances differentiation of mouse embryonic stem cells into serotonergic neurons. Stem Cells Dev 2011, 20, 301–311.
  • Ding YQ, Yin J, Kania A, Zhao ZQ, Johnson RL, Chen ZF. Lmx1b controls the differentiation and migration of the superficial dorsal horn neurons of the spinal cord. Development 2004, 131, 3693–3703.
  • Rohr C, Prestel J, Heidet L, Hosser H, Kriz W, Johnson RL, Antignac C, Witzgall R. The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. J Clin Invest 2002, 109, 1073–1082.
  • Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, Lee B. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest 2002, 109, 1065–1072.
  • Song NN, Xiu JB, Huang Y, Chen JY, Zhang L, Gutknecht L, Lesch KP, Li H, Ding YQ. Adult raphe-specific deletion of Lmx1b leads to central serotonin deficiency. PLoS One 2011, 6, 15998.
  • Smidt MP, Smits SM, Burbach JP. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur J Pharmacol 2003, 480, 75–88.
  • O’Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD. Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 2005, 132, 3163–3173.
  • Rascle A, Neumann T, Raschta AS, Neumann A, Heining E, Kastner J, Witzgall R. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes. Exp Cell Res 2009, 315, 76–96.
  • Quaggin SE. Transcriptional regulation of podocyte specification and differentiation. Microsc Res Tech 2002, 57, 208–211.
  • Rascle A, Suleiman H, Neumann T, Witzgall R. Role of transcription factors in podocytes. Nephron Exp Nephrol 2007, 106, 60–66.
  • Haldin CE, Massé KL, Bhamra S, Simrick S, Kyuno J, Jones EA. The lmx1b gene is pivotal in glomus development in Xenopus laevis. Dev Biol 2008, 322, 74–85.
  • Endele S, Klein S, Richter S, Molter T, Amann K, Klanke B, Witzgall R, Johnson RL, Hilgers KF, Winterpacht A. Renal phenotype in heterozygous Lmx1b knockout mice (Lmx1b+/-) after unilateral nephrectomy. Transgenic Res 2007, 16, 723–729.
  • Kaufman L, Potla U, Coleman S, Dikiy S, Hata Y, Kurihara H, He JC, D’Agati VD, Klotman PE. Up-regulation of the homophilic adhesion molecule sidekick-1 in podocytes contributes to glomerulosclerosis. J Biol Chem 2010, 285, 25677–25685.
  • Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol 2009, 20, 1997–2008.
  • Yu Y, Leng CG, Kato Y, Terada N, Fujii Y, Ohno S. Ultrastructural study of anionic sites in glomerular basement membranes at different perfusion pressures by quick-freezing and deep-etching method. Nephron 1998, 78, 88–95.
  • Balasubramanian S, Jansen M, Valerius MT, Humphreys BD, Strom TB. Orphan nuclear receptor Nur77 promotes acute kidney injury and renal epithelial apoptosis. J Am Soc Nephrol 2012, 23, 674–686.
  • Hussain S, Romio L, Saleem M, Mathieson P, Serrano M, Moscat J, Diaz-Meco M, Scambler P, Koziell A. Nephrin deficiency activates NF-kappaB and promotes glomerular injury. J Am Soc Nephrol 2009, 20, 1733–1743.
  • Ranhotra HS. The mammalian orphan nuclear receptors: orphans as cellular guardians. J Recept Signal Transduct Res 2011, 31, 20–25.
  • Kenakin T. Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 2011, 336, 296–302.
  • Kenakin T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci 2003, 24, 346–354.
  • Li J, Zhang Z, Wang D, Wang Y, Li Y, Wu G. TGF-beta 1/Smads signaling stimulates renal interstitial fibrosis in experimental AAN. J Recept Signal Transduct Res 2009, 29, 280–285.
  • Wang Y, Zhang Z, Shen H, Lu Y, Li H, Ren X, Wu G. TGF-beta1/Smad7 signaling stimulates renal tubulointerstitial fibrosis induced by AAI. J Recept Signal Transduct Res 2008, 28, 413–428.
  • Zhou TB, Qin YH, Lei FY, Su LN, Zhao YJ, Huang WF. All-trans retinoic acid regulates the expression of apolipoprotein E in rats with glomerulosclerosis induced by Adriamycin. Exp Mol Pathol 2011, 90, 287–294.
  • Zhou TB, Qin YH, Lei FY, Su LN, Zhao YJ, Huang WF. apoE expression in glomerulus and correlation with glomerulosclerosis induced by adriamycin in rats. Ren Fail 2011, 33, 348–354.
  • Zhou TB, Qin YH, Ou C, Lei FY, Su LN, Huang WF, Zhao YJ. All-trans retinoic acid can regulate the expressions of gelatinases and apolipoprotein E in glomerulosclerosis rats. Vascul Pharmacol 2011, 55, 169–177.
  • Zhou TB, Qin YH, Zhou C, Lei FY, Zhao YJ, Chen J, Su LN, Huang WF. Less expression of prohibitin is associated with increased caspase-3 expression and cell apoptosis in renal interstitial fibrosis rats. Nephrology (Carlton) 2012, 17, 189–196.
  • Zhou TB, Qin YH, Li ZY, Xu HL, Zhao YJ, Lei FY. All-trans retinoic Acid treatment is associated with prohibitin expression in renal interstitial fibrosis rats. Int J Mol Sci 2012, 13, 2769–2782.
  • Zhou TB, Qin YH. The potential mechanism for the different expressions of gelatinases induced by all-trans retinoic acid in different cells. J Recept Signal Transduct Res 2012, 32, 129–133.
  • Oishi T, Date S, Shimamoto Y, Saito T, Hirota K, Sugaya T, Kon Y, Fukamizu A, Tanimoto K. A nuclear receptor, hepatocyte nuclear factor 4, differently contributes to the human and mouse angiotensinogen promoter activities. J Recept Signal Transduct Res 2010, 30, 484–492.
  • Kenakin T, Christopoulos A. Analytical pharmacology: the impact of numbers on pharmacology. Trends Pharmacol Sci 2011, 32, 189–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.