123
Views
7
CrossRef citations to date
0
Altmetric
Research Article

p38 Mitogen-activated protein kinase is stimulated by both angiotensin II and angiotensin III in cultured rat astrocytes

, &
Pages 205-211 | Received 21 Oct 2013, Accepted 12 Dec 2013, Published online: 28 Jan 2014

References

  • Herichova I, Szantoova K. Renin-angiotensin system: upgrade of recent knowledge and perspectives. Endocr Regul 2013;47:39–52
  • Atlas SA. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 2007;13:9–20
  • Yugandhar VG, Clark MA. Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 2013;46C:26–32
  • Abhold RH, Sullivan MJ, Wright JW, et al. Binding, degradation and pressor activity of angiotensins II and III after aminopeptidase inhibition with amastatin and bestatin. J Pharmacol Exp Ther 1987;242:957–62
  • Reaux A, Fournie-Zaluski MC, Llorens-Cortes C. Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab 2001;12:157–62
  • Zini S, Fournie-Zaluski MC, Chauvel E, et al. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Nat Acad Sci USA 1996;93:11968–73
  • Campbell WB, Brooks SN, Pettinger WA. Angiotensin II- and angiotensin 3-induced aldosterone release vivo in the rat. Science 1974;184:994–6
  • Blair-West JR, Coghlan JP, Denton DA, et al. A dose-response comparison of the actions of angiotensin II and angiotensin III in sheep. J Endocrinol 1980;87:409–17
  • Blair-West JR, Coghlan JP, Denton DA, et al. The effect of the heptapeptide (2–8) and hexapeptide (3–8) fragments of angiotensin II on aldosterone secretion. J Clin Endocrinol Metabol 1971;32:575–8
  • Campbell WB, Pettinger WA. Organ specificity of angiotensin II and Des-aspartyl angiotensin II in the conscious rat. J Pharmacol Exp Ther 1976;198:450–6
  • Chen CY, Huang WC. Pressor and renal effects of intracerebroventricularly administered angiotensins II and III in rats. Kidney Blood Press Res 2000;23:95–105
  • Ruiz-Ortega M, Lorenzo O, Egido J. Angiotensin III increases MCP-1 and activates NF-kappaB and AP-1 in cultured mesangial and mononuclear cells. Kidney Int 2000;57:2285–98
  • Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol 2007;292:C82–97
  • Touyz RM, Schiffrin EL. Signal transduction in hypertension: Part I. Curr Opin Nephrol Hypertension 1993;2:5–16
  • Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol 2012;a011524
  • Mii S, Khalil RA, Morgan KG, et al. Mitogen-activated protein kinase and proliferation of human vascular smooth muscle cells. Am J Physiol 1996;270:H142–50
  • Force T, Bonventre JV. Growth factors and mitogen-activated protein kinases. Hypertension 1998;31:152–61
  • Touyz RM, Schiffrin EL. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 1999;34:976–82
  • Minden A, Lin A, Smeal T, et al. c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol 1994;14:6683–8
  • Kallunki T, Su B, Tsigelny I, et al. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev 1994;8:2996–3007
  • Sluss HK, Barrett T, Derijard B, et al. Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Mol Cell Biol 1994;14:8376–84
  • Zhang A, Ding G, Huang S, et al. c-Jun NH2-terminal kinase mediation of angiotensin II-induced proliferation of human mesangial cells. Am J Physiol Renal Physiol 2005;288:F1118–24
  • Kyriakis JM, Banerjee P, Nikolakaki E, et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994;369:156–60
  • Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005;15:11–8
  • Meloche S, Landry J, Huot J, et al. p38 MAP kinase pathway regulates angiotensin II-induced contraction of rat vascular smooth muscle. Am J Physiol 2000;279:H741–51
  • Wenzel S, Taimor G, Piper HM, et al. Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J 2001;15:2291–3
  • Kusuhara M, Takahashi E, Peterson TE, et al. p38 Kinase is a negative regulator of angiotensin II signal transduction in vascular smooth muscle cells: effects on Na+/H+ exchange and ERK1/2. Circul Res 1998;83:824–31
  • Koka V, Huang XR, Chung AC, et al. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol 2008;172:1174–83
  • Viedt C, Soto U, Krieger-Brauer HI, et al. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscl Thromb Vascul Biol 2000;20:940–8
  • Touyz RM, He G, El Mabrouk M, et al. p38 Map kinase regulates vascular smooth muscle cell collagen synthesis by angiotensin II in SHR but not in WKY. Hypertension 2001;37(2 Pt 2):574–80
  • Nemoto W, Nakagawasai O, Yaoita F, et al. Angiotensin II produces nociceptive behavior through spinal AT1 receptor-mediated p38 mitogen-activated protein kinase activation in mice. Mol Pain 2013;9:38
  • Xiao L, Haack KK, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol 2013;304:C1073–9
  • Wei SG, Yu Y, Zhang ZH, et al. Mitogen-activated protein kinases mediate upregulation of hypothalamic angiotensin II type 1 receptors in heart failure rats. Hypertension 2008;52:679–86
  • Clark MA, Nguyen C, Tran H. Angiotensin III induces c-Jun N-terminal kinase leading to proliferation of rat astrocytes. Neurochem Res 2012;37:1475–81
  • Clark MA, Tran H, Nguyen C. Angiotensin III stimulates ERK1/2 mitogen-activated protein kinases and astrocyte growth in cultured rat astrocytes. Neuropeptides 2011;45:329–35
  • Zvalova D, Cordier J, Mesnil M, et al. p38/SAPK2 controls gap junction closure in astrocytes. Glia 2004;46:323–33
  • Saha RN, Jana M, Pahan K. MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65. J Immunol 2007;179:7101–9
  • Alkaitis MS, Solorzano C, Landry RP, et al. Evidence for a role of endocannabinoids, astrocytes and p38 phosphorylation in the resolution of postoperative pain. PLoS One 2010;5:e10891
  • Clark MA, Gonzalez N. Angiotensin II stimulates rat astrocyte mitogen-activated protein kinase activity and growth through EGF and PDGF receptor transactivation. Regulat Peptides 2007;144:115–22
  • Clark MA, Gonzalez N. Src and Pyk2 mediate angiotensin II effects in cultured rat astrocytes. Regulat Peptides 2007;143:47–55
  • Tallant EA, Higson JT. Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain. Glia 1997;19:333–42
  • Kandalam U, Palanisamy, M, Clark, MA. Angiotensin II induces cell growth and IL-6 mRNA expression through the JAK2/STAT3 pathway in rat cerebellar astrocytes. JAK-STAT 2012;1:83–9
  • Kandalam U, Clark MA. Angiotensin II activates JAK2/STAT3 pathway and induces interleukin-6 production in cultured rat brainstem astrocytes. Regulat Peptides 2010;159:110–6
  • Clark MA, Guillaume G, Pierre-Louis HC. Angiotensin II induces proliferation of cultured rat astrocytes through c-Jun N-terminal kinase. Brain Res Bull 2008;75:101–6
  • Clark M. Angiotensin II activates mitogen-activated protein kinases and stimulates growth in rat medullary astrocytes. FASEB J [Abstract]. 2001;15:A1169
  • Clark MA, Nguyen C, Tran H. Distinct molecular effects of angiotensin II and angiotensin III in rat astrocytes. Int J Hypertens 2013;2013:8
  • Karamyan VT, Gadepalli R, Rimoldi JM, et al. Brain AT1 angiotensin receptor subtype binding: importance of peptidase inhibition for identification of angiotensin II as its endogenous ligand. J Pharmacol Exp Ther 2009;331:170–7
  • Delaney J, Chiarello R, Villar D, et al. Regulation of c-fos, c-jun and c-myc gene expression by angiotensin II in primary cultured rat astrocytes: role of ERK1/2 MAP kinases. Neurochem Res 2008;33:545–50
  • Blume A, Undeutsch C, Zhao Y, et al. ANG III induces expression of inducible transcription factors of AP-1 and Krox families in rat brain. Am J Physiol 2005;289:R845–50
  • Reaux A, Fournie-Zaluski MC, David C, et al. Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Nat Acad Sci U S A 1999;96:13415–20
  • Batt CM, Klein EW, Harding JW, et al. Pressor responses to amastatin, bestatin and Plummer's inhibitors are suppressed by pretreatment with the angiotensin receptor antagonist sarthran. Brain Res Bull 1988;21:731–5
  • Wright JW, Mizutani S, Murray CE, et al. Aminopeptidase-induced elevations and reductions in blood pressure in the spontaneously hypertensive rat. J Hypertens 1990;8:969–74
  • Harding JW, Felix D, Sullivan MJ, et al. The pivotal role at angiotensin III in the brain angiotensin system. Proc West Pharmacol Soc 1987;30:11–5
  • Dong Y, Benveniste EN. Immune function of astrocytes. Glia 2001;36:180–90
  • Araque A. Astrocyte-neuron signaling in the brain–implications for disease. Curr Opin Investig Drugs 2006;7:619–24
  • Blackburn D, Sargsyan S, Monk PN, et al. Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia 2009;57:1251–64
  • Stornetta RL, Hawelu-Johnson CL, Guyenet PG, et al. Astrocytes synthesize angiotensinogen in brain. Science 1988;242:1444–6
  • Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev 1998;78:583–686
  • Wright JW, Harding JW. Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Brain Res Rev 1992;17:227–62
  • Wright JW, Harding JW. Important role for angiotensin III and IV in the brain renin-angiotensin system. Brain Res Brain Res Rev 1997;25:96–124
  • Wright JW, Jensen LL, Cushing LL, et al. Heightened blood pressure responsiveness to intracarotid infusion of angiotensins in the spontaneously hypertensive rat. Pharmacol Biochem Behav 1988;30:343–6
  • Wright JW, Jensen LL, Roberts KA, et al. Structure-function analyses of brain angiotensin control of pressor action in rats. Am J Physiol 1989;257:R1551–7
  • Tonnaer JA, van Put JJ, de Jong W. Intracerebroventricular infusion of N-acetyl-pepstatin attenuates the development of hypertension in the spontaneously hypertensive rat. Eur J Pharmacol 1981;74:113–4
  • Karamyan VT, Speth RC. Enzymatic pathways of the brain renin–angiotensin system: Unsolved problems and continuing challenges. Regulat Peptides 2007;143:15–27
  • Arnold AC, Gallagher PE, Diz DI. Brain renin-angiotensin system in the nexus of hypertension and aging. Hypertens Res 2013;36:5–13
  • Kim KS, Abraham D, Williams B, et al. beta-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury. Am J Physiol 2012;303:H1001–10
  • Violin JD, DeWire SM, Yamashita D, et al. Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 2010;335:572–9
  • Monasky MM, Taglieri DM, Henze M, et al. The beta-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium. Am J Physiol 2013;305:H856–66
  • Reaux-Le Goazigo A, Iturrioz X, Fassot C, et al. Role of angiotensin III in hypertension. Curr Hypertens Rep 2005;7:128–34
  • Banegas I, Prieto I, Vives F, et al. Brain aminopeptidases and hypertension. J Renin Angiotensin Aldosterone Syst 2006;7:129–34
  • Banegas I, Prieto I, Vives F, et al. Plasma aminopeptidase activities in rats after left and right intrastriatal administration of 6-hydroxydopamine. Neuroendocrinology 2004;80:219–24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.