147
Views
8
CrossRef citations to date
0
Altmetric
Original Paper

Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk

, &
Pages 149-164 | Received 09 May 2014, Accepted 30 Jun 2014, Published online: 23 Jul 2014

References

  • Gaziano TA. Cardiovascular disease in the developing world and its cost-effective management. Circulation 2005;112:3547–53
  • Faxon DP, Creager MA, Smith SC, Jr, et al. Atherosclerotic vascular disease conference: executive summary: atherosclerotic vascular disease conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 2004;109:2595–604
  • Nelles G. [Interdisciplinary interaction for vascular diseases of the eye: neurological differential diagnosis]. Ophthalmologe 2014;111:15–8
  • Gallego Cullere J, Herrera M, Navarro M. [Ophthalmological manifestations of cerebrovascular disease]. An Sist Sanit Navar 2008;31:111–26
  • Bakalli A, Kocinaj D, Krasniqi A. Relationship of hypertensive retinopathy to thoracic aortic atherosclerosis in patients with severe arterial hypertension. Clin Exp Hypertens 2011;33:89–94
  • Cheung N, Liew G, Wong TY. Current approaches to retinopathy as a predictor of cardiovascular risk. In: Hammes HP, Porta M, eds. Experimental approaches to diabetic retinopathy. Basel: Karger; 2010:203–19
  • Song YJ, Cho KI, Kim SM, et al. The predictive value of retinal vascular findings for carotid artery atherosclerosis: are further recommendations with regard to carotid atherosclerosis screening needed? Heart Vessels 2013;28:369–76
  • Hayreh SS. Retinal and optic nerve head ischemic disorders and atherosclerosis: role of serotonin. Prog Retin Eye Res. 1999;18:191–221
  • Hayreh SS, Piegors DJ, Heistad DD. Serotonin-induced constriction of ocular arteries in atherosclerotic monkeys. Implications for ischemic disorders of the retina and optic nerve head. Arch Ophthalmol 1997;115:220–8
  • Rozegnal-Madej A, Bielecka E, Swiech-Zubilewicz A, et al. [Ophthalmological complications associated with clinically significant carotid stenosis]. Klin Oczna 2012;114:57–62
  • Makowiec-Tabernacka M, Brydak-Godowska J. [Ocular changes in internal carotid artery diseases caused by artheriosclerosis]. Pol Merkur Lekarski 2008;24:170–2
  • Crispin S. Ocular lipid deposition and hyperlipoproteinaemia. Prog Retin Eye Res 2002;21:169–224
  • Klein R, Marino EK, Kuller LH, et al. The relation of atherosclerotic cardiovascular disease to retinopathy in people with diabetes in the Cardiovascular Health Study. Br J Ophthalmol 2002;86:84–90
  • Wong TY, Cheung N, Islam FM, et al. Relation of retinopathy to coronary artery calcification: the multi-ethnic study of atherosclerosis. Am J Epidemiol 2008;167:51–8
  • Elliott FA, Leonberg SC Jr. Conjunctival microangiopathy. An early sign of degenerative vascular disease? Am J Med 1977;63:208–14
  • Moore D, Harris A, Wudunn D, et al. Dysfunctional regulation of ocular blood flow: a risk factor for glaucoma? Clin Ophthalmol 2008;2:849–61
  • Duprez DA. The eye, the mirror of the heart. Eur Heart J 2007;28:1915–6
  • Knecht PB, Menghini M, Bachmann LM, et al. The ocular pulse amplitude as a noninvasive parameter for carotid artery stenosis screening: a test accuracy study. Ophthalmology 2012;119:1244–9
  • Lawrence PF, Oderich GS. Ophthalmic findings as predictors of carotid artery disease. Vasc Endovascular Surg 2002;36:415–24
  • Cheng D, Knox C, Young N, et al. PolySearch: a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Res 2008;36:W399–405
  • Farkas IJ, Szanto-Varnagy A, Korcsmaros T. Linking proteins to signaling pathways for experiment design and evaluation. PLoS One 2012;7:e36202
  • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808–15
  • Peri S, Navarro JD, Kristiansen TZ, et al. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 2004;32:D497–501
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30
  • Jupe S, Akkerman JW, Soranzo N, Ouwehand WH. Reactome – a curated knowledgebase of biological pathways: megakaryocytes and platelets. J Thromb Haemost 2012;10:2399–402
  • Korcsmaros T, Farkas IJ, Szalay MS, et al. Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics 2010;26:2042–50
  • Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011;27:431–2
  • Watts DJ, Strogatz SH. Collective dynamics of ‘small-world' networks. Nature 1998;393:440–2
  • Raman K. Construction and analysis of protein-protein interaction networks. Autom Exp 2010;2:2
  • Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5:101–13
  • Mcsweeney PJ, Ashkenazi M, States D. Random network plugin. 2008. Available from: https://sites.google.com/site/randomnetworkplugin/Home
  • Yu H, Kim PM, Sprecher E, et al. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 2007;3:e59
  • Santiago JA, Potashkin JA. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes. PLoS One 2013;8:e83940
  • Le DH, Kwon YK. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection. Comput Biol Chem 2012;37:17–23
  • Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003;4:2
  • Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57
  • Zhu F, Han B, Kumar P, et al. Update of TTD: Therapeutic Target Database. Nucleic Acids Res 2010;38:D787–91
  • Xu J, Mosher D. Fibronectin and other adhesive glycoproteins. In: Mecham R, ed. The extracellular matrix: an overview. Berlin, Heidelberg: Springer 2001:41–75
  • Rodrigues RG, Guo N, Zhou L, et al. Conformational regulation of the fibronectin binding and alpha 3beta 1 integrin-mediated adhesive activities of thrombospondin-1. J Biol Chem 2001;276:27913–22
  • Hagg S, Skogsberg J, Lundstrom J, et al. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study. PLoS Genet 2009;5:e1000754
  • Lupien CB, Bolduc C, Landreville S, Salesse C. Comparison between the gene expression profile of human Muller cells and two spontaneous Muller cell lines. Invest Ophthalmol Vis Sci 2007;48:5229–42
  • Adachi-Uehara N, Kato M, Nimura Y, et al. Up-regulation of genes for oxidative phosphorylation and protein turnover in diabetic mouse retina. Exp Eye Res 2006;83:849–57
  • Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 2011;52:4402–9
  • Feng Y, Wang Y, Li L, et al. Gene expression profiling of vasoregression in the retina – involvement of microglial cells. PLoS One 2011;6:e16865
  • Hammes HP, Feng Y, Pfister F, Brownlee M. Diabetic retinopathy: targeting vasoregression. Diabetes 2011;60:9–16
  • Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 2013;17:20–33
  • Vidal-Vanaclocha F. Inflammation in the molecular pathogenesis of cancer and atherosclerosis. Reumatol Clin 2009;5:40–3
  • Ross JS, Stagliano NE, Donovan MJ, et al. Atherosclerosis and cancer: common molecular pathways of disease development and progression. Ann N Y Acad Sci 2001;947:271–92; discussion 92–3
  • Nguyen NT, Zhang X, Wu C, et al. Integrative computational and experimental approaches to establish a post-myocardial infarction knowledge map. PLoS Comput Biol 2014;10:e1003472
  • Ozgur A, Xiang Z, Radev DR, He Y. Literature-based discovery of IFN-gamma and vaccine-mediated gene interaction networks. J Biomed Biotechnol 2010;2010:426479
  • Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006;361:1545–64
  • Natarajan P, Cannon CP. Could direct inhibition of inflammation be the “next big thing” in treating atherosclerosis? Arterioscler Thromb Vasc Biol 2010;30:2081–3
  • Abu El-Asrar AM, Mohammad G, De Hertogh G, et al. Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy. PLoS One 2013;8:e65472
  • Zhang W, Liu H, Rojas M, et al. Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy 2011;3:609–28
  • Chang JH, McCluskey PJ, Wakefield D. Toll-like receptors in ocular immunity and the immunopathogenesis of inflammatory eye disease. Br J Ophthalmol 2006;90:103–8
  • Wang Y, Zhang J, Yi XJ, Yu FS. Activation of ERK1/2 MAP kinase pathway induces tight junction disruption in human corneal epithelial cells. Exp Eye Res 2004;78:125–36
  • Chen YJ, Tsai RK, Wu WC, et al. Enhanced PKCdelta and ERK signaling mediate cell migration of retinal pigment epithelial cells synergistically induced by HGF and EGF. PLoS One 2012;7:e44937
  • Sheetz MJ, Aiello LP, Shahri N, et al. Effect of ruboxistaurin (RBX) On visual acuity decline over a 6-year period with cessation and reinstitution of therapy: results of an open-label extension of the Protein Kinase C Diabetic Retinopathy Study 2 (PKC-DRS2). Retina 2011;31:1053–9
  • Yoshida A, Yoshida S, Ishibashi T, et al. Suppression of retinal neovascularization by the NF-kappaB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci 1999;40:1624–9
  • Hammes HP, Lin J, Renner O, et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 2002;51:3107–12
  • Fletcher EL, Phipps JA, Ward MM, et al. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des 2007;13:2699–712
  • Keshet E. Preventing pathological regression of blood vessels. J Clin Invest 2003;112:27–9
  • Bharadwaj AS, Appukuttan B, Wilmarth PA, et al. Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 2013;32:102–80
  • Pollastri MP, Campbell RK. Target repurposing for neglected diseases. Future Med Chem 2011;3:1307–15
  • Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12:56–68
  • Wang X, Thijssen B, Yu H. Target essentiality and centrality characterize drug side effects. PLoS Comput Biol 2013;9:e1003119
  • Yang LP, Sun HL, Wu LM, et al. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest Ophthalmol Vis Sci 2009;50:2319–27
  • Merklinger S. The pathobiology of pulmonary hypertension: lessons from experimental studies. In: Andrew NR, Van Arsdell G, Anderson R, eds. Congenital diseases in the right heart. London: Springer; 2009:39–47
  • Sanchez MC, Luna JD, Barcelona PF, et al. Effect of retinal laser photocoagulation on the activity of metalloproteinases and the alpha(2)-macroglobulin proteolytic state in the vitreous of eyes with proliferative diabetic retinopathy. Exp Eye Res 2007;85:644–50
  • Chen J, Mehta JL, Haider N, et al. Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 2004;94:370–6
  • Zhang Y, Chen N, Zhang J, Tong Y. Hsa-let-7g miRNA targets caspase-3 and inhibits the apoptosis induced by ox-LDL in endothelial cells. Int J Mol Sci 2013;14:22708–20
  • Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005;54:1559–65
  • Jung Y, Kim MS, Joo CK, Chung SK. Role of the intrinsic apoptotic pathway in cataractogenesis in type 2 diabetic patients. J Cataract Refract Surg 2013;39:1470–6
  • Jones KL, Maguire JJ, Davenport AP. Chemokine receptor CCR5: from AIDS to atherosclerosis. Br J Pharmacol 2011;162:1453–69
  • Abiko T, Abiko A, Clermont AC, et al. Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes 2003;52:829–37
  • Serra AM, Waddell J, Manivannan A, et al. CD11b+ bone marrow-derived monocytes are the major leukocyte subset responsible for retinal capillary leukostasis in experimental diabetes in mouse and express high levels of CCR5 in the circulation. Am J Pathol 2012;181:719–27
  • Li N. CD4+ T cells in atherosclerosis: regulation by platelets. Thromb Haemost 2013;109:980–90
  • Wilhelm AJ, Rhoads JP, Wade NS, Major AS. Dysregulated CD4+ T cells from SLE-susceptible mice are sufficient to accelerate atherosclerosis in LDLr-/- mice. Ann Rheum Dis 2014. [Epub ahead of print]
  • Marek N, Mysliwiec M, Raczynska K, et al. Increased spontaneous production of VEGF by CD4+ T cells in type 1 diabetes. Clin Immunol 2010;137:261–70
  • Tremolada G, Del Turco C, Lattanzio R, et al. The role of angiogenesis in the development of proliferative diabetic retinopathy: impact of intravitreal anti-VEGF treatment. Exp Diabetes Res 2012;2012:728325
  • Cho SY, Klemke RL. Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J Cell Biol 2000;149:223–36
  • Qazi Y, Maddula S, Ambati BK. Mediators of ocular angiogenesis. J Genet 2009;88:495–515
  • Schreier B, Gekle M, Grossmann C. Role of epidermal growth factor receptor in vascular structure and function. Curr Opin Nephrol Hypertens 2014;23:113–21
  • Hewing NJ, Weskamp G, Vermaat J, et al. Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice. Invest Ophthalmol Vis Sci 2013;54:864–70
  • Dollery CM, Owen CA, Sukhova GK, et al. Neutrophil elastase in human atherosclerotic plaques: production by macrophages. Circulation 2003;107:2829–36
  • Crane IJ, Liversidge J. Mechanisms of leukocyte migration across the blood-retina barrier. Semin Immunopathol 2008;30:165–77
  • Wary KK, Kohler EE, Chatterjee I. Focal adhesion kinase regulation of neovascularization. Microvasc Res 2012;83:64–70
  • Lim Y, Jo DH, Kim JH, et al. Human apolipoprotein(a) kringle V inhibits ischemia-induced retinal neovascularization via suppression of fibronectin-mediated angiogenesis. Diabetes 2012;61:1599–608
  • Katsume A, Okigaki M, Matsui A, et al. Early inflammatory reactions in atherosclerosis are induced by proline-rich tyrosine kinase/reactive oxygen species-mediated release of tumor necrosis factor-alpha and subsequent activation of the p21Cip1/Ets-1/p300 system. Arterioscler Thromb Vasc Biol 2011;31:1084–92
  • Matsui A, Okigaki M, Amano K, et al. Central role of calcium-dependent tyrosine kinase PYK2 in endothelial nitric oxide synthase-mediated angiogenic response and vascular function. Circulation 2007;116:1041–51
  • Kohn L, Kadzhaev K, Burstedt MS, et al. Mutation in the PYK2-binding domain of PITPNM3 causes autosomal dominant cone dystrophy (CORD5) in two Swedish families. Eur J Hum Genet 2007;15:664–71
  • Stenman S, von Smitten K, Vaheri A. Fibronectin and atherosclerosis. Acta Med Scand Suppl 1980;642:165–70
  • Roy S, Nasser S, Yee M, Graves DT. A long-term siRNA strategy regulates fibronectin overexpression and improves vascular lesions in retinas of diabetic rats. Mol Vis 2011;17:3166–74
  • Proctor BM, Ren J, Chen Z, et al. Grb2 is required for atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol 2007;27:1361–7
  • Shelby SJ, Colwill K, Dhe-Paganon S, et al. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium. PLoS One 2013;8:e53964
  • Kokubo T, Uchida H, Choi ET. Integrin alpha(v)beta(3) as a target in the prevention of neointimal hyperplasia. J Vasc Surg 2007;45:A33–8
  • Mikkelsson J, Perola M, Penttila A, et al. The GPIIIa (beta3 integrin) PlA polymorphism in the early development of coronary atherosclerosis. Atherosclerosis 2001;154:721–7
  • Friedlander M, Theesfeld CL, Sugita M, et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci U S A 1996;93:9764–9
  • Harper MT, Poole AW. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J Thromb Haemost 2010;8:454–62
  • Li Q, Park K, Li C, et al. Induction of vascular insulin resistance and endothelin-1 expression and acceleration of atherosclerosis by the overexpression of protein kinase C-beta isoform in the endothelium. Circ Res 2013;113:418–27
  • Anfuso CD, Lupo G, Romeo L, et al. Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCalpha and the MAPK/ERK cascade. J Lipid Res 2007;48:782–93
  • Gao Q, Tan J, Ma P, et al. PKC alpha affects cell cycle progression and proliferation in human RPE cells through the downregulation of p27kip1. Mol Vis 2009;15:2683–95
  • Li N, McLaren JE, Michael DR, et al. ERK is integral to the IFN-gamma-mediated activation of STAT1, the expression of key genes implicated in atherosclerosis, and the uptake of modified lipoproteins by human macrophages. J Immunol 2010;185:3041–8
  • Wiesner P, Choi SH, Almazan F, et al. Low doses of lipopolysaccharide and minimally oxidized low-density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia. Circ Res 2010;107:56–65
  • Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001;107:255–64
  • Shono T, Ono M, Izumi H, et al. Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 1996;16:4231–9
  • Mercer J, Bennett M. The role of p53 in atherosclerosis. Cell Cycle 2006;5:1907–9
  • Salazar JJ, Gallego-Pinazo R, de Hoz R, et al. “Super p53” mice display retinal astroglial changes. PLoS One 2013;8:e65446
  • Saiz-Ladera C, Lara MF, Garin M, et al. p21 suppresses inflammation and tumorigenesis on pRB-deficient stratified epithelia. Oncogene 2013. [Epub ahead of print]
  • Rajala RV. Phosphoinositide 3-kinase signaling in the vertebrate retina. J Lipid Res 2010;51:4–22
  • Simoncini T, Hafezi-Moghadam A, Brazil DP, et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000;407:538–41
  • Zotes TM, Arias CF, Fuster JJ, et al. PI3K p110gamma deletion attenuates murine atherosclerosis by reducing macrophage proliferation but not polarization or apoptosis in lesions. PLoS One 2013;8:e72674
  • Ivanovic I, Anderson RE, Le YZ, et al. Deletion of the p85alpha regulatory subunit of phosphoinositide 3-kinase in cone photoreceptor cells results in cone photoreceptor degeneration. Invest Ophthalmol Vis Sci 2011;52:3775–83
  • Xu S, Bai P, Little PJ, Liu P. Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med Res Rev 2014;34:644–75
  • Sahaboglu A, Tanimoto N, Kaur J, et al. PARP1 gene knock-out increases resistance to retinal degeneration without affecting retinal function. PLoS One 2010;5:e15495
  • Zheng L, Gong B, Hatala DA, Kern TS. Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 2007;48:361–7
  • Martin-Ventura JL, Blanco-Colio LM, Munoz-Garcia B, et al. NF-kappaB activation and Fas ligand overexpression in blood and plaques of patients with carotid atherosclerosis: potential implication in plaque instability. Stroke 2004;35:458–63
  • Joussen AM, Poulaki V, Mitsiades N, et al. Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J 2003;17:76–8
  • Sugita S, Taguchi C, Takase H, et al. Soluble Fas ligand and soluble Fas in ocular fluid of patients with uveitis. Br J Ophthalmol 2000;84:1130–4
  • Hiesinger W, Cohen JE, Atluri P. Therapeutic potential of Rb phosphorylation in atherosclerosis. Cell Cycle 2014;13:352
  • Suzuma K, Takahara N, Suzuma I, et al. Characterization of protein kinase C beta isoform's action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc Natl Acad Sci USA 2002;99:721–6
  • Orr AW, Hastings NE, Blackman BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 2010;47:168–80
  • Al-Shabrawey M, Bartoli M, El-Remessy AB, et al. Role of NADPH oxidase and Stat3 in statin-mediated protection against diabetic retinopathy. Invest Ophthalmol Vis Sci 2008;49:3231–8
  • Rahman A, Fazal F. Blocking NF-kappaB: an inflammatory issue. Proc Am Thorac Soc 2011;8:497–503
  • DeNiro M, Al-Mohanna FH, Alsmadi O, Al-Mohanna FA. The nexus between VEGF and NFkappaB orchestrates a hypoxia-independent neovasculogenesis. PLoS One 2013;8:e59021
  • Lupu F, Heim DA, Bachmann F, et al. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1995;15:1444–55
  • Simpson AJ, Booth NA, Moore NR, et al. Circulating tissue-type plasminogen activator and plasminogen activator inhibitor type 1 in proliferative diabetic retinopathy: a pilot study. Acta Diabetol 1999;36:155–8
  • Chen CS, Lee AW, Campbell B, et al. Efficacy of intravenous tissue-type plasminogen activator in central retinal artery occlusion: report from a randomized, controlled trial. Stroke 2011;42:2229–34
  • Samanta S, Anderson K, Moran S, et al. Characterization of a human 12/15-lipoxygenase promoter variant associated with atherosclerosis identifies vimentin as a promoter binding protein. PLoS One 2012;7:e42417
  • Lang GE. Treatment of diabetic retinopathy with protein kinase C subtype Beta inhibitor. Dev Ophthalmol 2007;39:157–65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.