156
Views
14
CrossRef citations to date
0
Altmetric
Original Article

The mechanism of proton translocation in respiratory complex I from molecular dynamics

, , , &
Pages 170-179 | Received 06 Jun 2014, Accepted 03 Jul 2014, Published online: 23 Jul 2014

References

  • Brandt U. Energy converting NADH: quinone oxidoreductase (complex I). Annu Rev Biochem 2006;75:69–92
  • Michel J, DeLeon-Rangel J, Zhu S, et al. Mutagenesis of the L, M, and N subunits of complex I from Escherichia coli indicates a common role in function. Plos One 2011;6:e17420
  • Vik S B. The transmembrane helices of the L, M, and N subunits of complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis. Febs Lett 2011;585:1180–4
  • Walker JE. The NADH: ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 1992;25:253–324
  • Yagi T, Matsuno-Yagi A. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 2003;42:2266–74
  • Sazanov LA. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 2007;46:2275–88
  • Ohnishi T. Iron-sulfur clusters/semiquinones in complex I. BBA. Bioenergetics 1998;1364:186–206
  • Schapira A. Human complex I defects in neurodegenerative diseases. BBA. Bioenergetics 1998;1364:261–70
  • Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003;302:819–22
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483–95
  • Berrisford JM, Sazanov LA. Structural basis for the mechanism of respiratory complex I. J Biol Chem 2009;284:29773–83
  • Efremov RG, Baradaran R, Sazanov LA. The architecture of respiratory complex I. Nature 2010;465:441–5
  • Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 2006;311:1430–6
  • Pohl T, Bauer T, Dörner K, et al. Iron-sulfur cluster N7 of the NADH: ubiquinone oxidoreductase (complex I) is essential for stability but not involved in electron transfer. Biochemistry 2007;46:6588–96
  • Galkin A, Grivennikova V, Vinogradov A. H+/2 stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. Febs Lett 1999;451:157–61
  • Mathiesen C, Hägerhäll C. Transmembrane topology of the NuoL, M and N subunits of NADH: quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. BBA. Bioenergetics 2002;1556:121–32
  • Ohnishi T, Nakamaru-Ogiso E, Ohnishi ST. A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I). Febs Lett 2010;584:4131–7
  • Wallace DC. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992;61:1175–212
  • Friedrich T. Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 2001;33:169–77
  • Hunte C, Zickermann V, Brandt U. Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 2010;329:448–51
  • Efremov RG, Sazanov LA. Structure of the membrane domain of respiratory complex I. Nature 2011;476:414–20
  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature 2013;494:443–8
  • Studio D, version 2.5. San Diego, CA: Accelrys. Inc.; 2009
  • Humphrey W, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. J Mol Graphics 1996;14:33–8
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926–35
  • Kalé L, Skeel R, Bhandarkar M, et al. NAMD2: greater scalability for parallel molecular dynamics* 1. J Comput Phys 1999;151:283–312
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998;102:3586–616
  • Brooks BR, Bruccoleri RE, Olafson BD. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983;4:187–217
  • Feller SE, MacKerell AD. An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 2000;104:7510–5
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys 1995;103:8577–93
  • Wraight CA. Chance and design – proton transfer in water, channels and bioenergetic proteins. BBA. Bioenergetics 2006;1757:886–912
  • Cukierman S. Et tu, Grotthuss! and other unfinished stories. BBA. Bioenergetics 2006;1757:876–85
  • Marx D. Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 2006;7:1848–70
  • Buch-Pedersen MJ, Pedersen BP, Veierskov B, et al. Protons and how they are transported by proton pumps. Pflugers Arch 2009;457:573–9
  • Fischer N, Kandt C. Three ways in, one way out: water dynamics in the trans-membrane domains of the inner membrane translocase AcrB. Proteins 2011;79:2871–85
  • Steimle S, Bajzath C, Drner K, et al. The role of subunit NuoL for proton translocation by the respiratory complex I. Biochemistry 2011;50:3386–93
  • Amarneh B, Vik SB. Mutagenesis of subunit N of the Escherichia coli complex I. Identification of the initiation codon and the sensitivity of mutants to decylubiquinone. Biochemistry 2003;42:4800–8
  • Birrell JA, Hirst J. Truncation of subunit ND2 disrupts the threefold symmetry of the antiporter-like subunits in complex I from higher metazoans. Febs Lett 2010;584:4247–52
  • Brandt U. A two-state stabilization-change mechanism for proton-pumping complex I. BBA. Bioenergetics 2011;1807:1364–9
  • Morino M, Natsui S, Ono T, et al. Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels, or Mrp complex formation. J Biol Chem 2010;285:30942–50
  • Warshel A. Computer simulations of enzyme catalysis: methods, progress, and insights. Annu Rev Bioph Biom 2003;32:425–43
  • Kamerlin SCL, Warshel A. The EVB as a quantitative tool for formulating simulations and analyzing biological and chemical reactions. Faraday Discuss 2009;145:71–106
  • Lill MA, Helms V. Molecular dynamics simulation of proton transport with quantum mechanically derived proton hopping rates (Q-HOP MD). J Chem Phys 2001;115:7993–8005
  • Kandt C, Schlitter J, Gerwert K. Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys J 2004;86:705–17
  • Kandt C, Gerwert K, Schlitter J. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Proteins 2005;58:528–37
  • Arkin IT, Xu H, Jensen MØ, et al. Mechanism of Na+/H+ antiporting. Science 2007;317:799–803

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.