216
Views
7
CrossRef citations to date
0
Altmetric
Research Article

ANP and CNP activate CFTR expressed in Xenopus laevis oocytes by direct activation of PKA

, , &
Pages 493-504 | Received 10 Dec 2014, Accepted 01 Feb 2015, Published online: 27 May 2015

References

  • Lin M, Nairn AC, Guggino SE. cGMP-dependent protein kinase regulation of a chloride channel in T84 cells. Am J Physiol 1992;262:C1304–12
  • Maack T, Okolicany J, Koh GY, Price DA. Functional properties of atrial natriuretic factor receptors. Semin Nephrol 1993;13:50–60
  • Wilkins MR, Nunez DJ, Wharton J. The natriuretic peptide family: turning hormones into drugs. J Endocrinol 1993;137:347–59
  • Koller KJ, Lowe DG, Bennett GL, et al. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 1991;252:120–3
  • Schofield JP, Jones DS, Forrest JN Jr. Identification of C-type natriuretic peptide in heart of spiny dogfish shark (Squalus acanthias). Am J Physiol 1991;261:F734–9
  • Nazario B, Hu RM, Pedram A, et al. Atrial and brain natriuretic peptides stimulate the production and secretion of C-type natriuretic peptide from bovine aortic endothelial cells. J Clin Invest 1995;95:1151–7
  • Banks M, Wei CM, Kim CH, et al. Mechanism of relaxations to C-type natriuretic peptide in veins. Am J Physiol 1996;271:H1907–11
  • Endlich K, Steinhausen M. Natriuretic peptide receptors mediate different responses in rat renal microvessels. Kidney Int 1997;52:202–7
  • Hutchinson HG, Trindade PT, Cunanan DB, et al. Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res 1997;35:158–67
  • Minamino N, Aburaya M, Kojima M, et al. Distribution of C-type natriuretic peptide and its messenger RNA in rat central nervous system and peripheral tissue. Biochem Biophys Res Commun 1993;197:326–35
  • Clavell AL, Stingo AJ, Wei CM, et al. C-type natriuretic peptide: a selective cardiovascular peptide. Am J Physiol 1993;264:R290–5
  • Stingo AJ, Clavell AL, Heublein DM, et al. Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 1992;263:H1318–21
  • Vaandrager AB, De Jonge HR. Effect of cyclic GMP on intestinal transport. Adv Pharmacol 1994;26:253–83
  • Forte LR, Currie MG. Guanylin: a peptide regulator of epithelial transport. FASEB J. 1995;9:643–50
  • Kulaksiz H, Schmid A, Honscheid M, et al. Clara cell impact in air-side activation of CFTR in small pulmonary airways. Proc Natl Acad Sci USA 2002;99:6796–801
  • Schwabe K, Cetin Y. Guanylin and functional coupling proteins in the hepatobiliary system of rat and guinea pig. Histochem Cell Biol 2012;137:589–97
  • D'Este L, Kulaksiz H, Rausch U, et al. Expression of guanylin in “pars tuberalis-specific cells” and gonadotrophs of rat adenohypophysis. Proc Natl Acad Sci USA 2000;97:1131–6
  • Kulaksiz H, Rehberg E, Stremmel W, Cetin Y. Guanylin and functional coupling proteins in the human salivary glands and gland tumors: expression, cellular localization, and target membrane domains. Am J Pathol 2002;161:655–64
  • Kulaksiz H, Schlenker T, Rost D, et al. Guanylin regulates chloride secretion in the human gallbladder via the bile fluid. Gastroenterology 2004;126:732–40
  • Kulaksiz H, Schmid A, Honscheid M, et al. Guanylin in the human pancreas: a novel luminocrine regulatory pathway of electrolyte secretion via cGMP and CFTR in the ductal system. Histochem Cell Biol 2001;115:131–45
  • Garbers DL, Lowe DG. Guanylyl cyclase receptors. J Biol Chem 1994;269:30741–4
  • Kawaguchi S, Uchida K, Ito T, et al. Immunohistochemical localization of atrial natriuretic peptide receptor in bovine kidney and lung. J Histochem Cytochem 1989;37:1739–42
  • Schulz S, Singh S, Bellet RA, et al. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 1989;58:1155–62
  • Shimonaka M, Saheki T, Hagiwara H, et al. Purification of atrial natriuretic peptide receptor from bovine lung. Evidence for a disulfide-linked subunit structure. J Biol Chem 1987;262:5510–14
  • Tharaux PL, Dussaule JC, Couette S, Clerici C. Evidence for functional ANP receptors in cultured alveolar type II cells. Am J Physiol 1998;274:L244–51
  • Tremblay J, Desjardins R, Hum D, et al. Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biochem 2002;230:31–47
  • Fenrick R, Babinski K, McNicoll N, et al. Cloning and functional expression of the bovine natriuretic peptide receptor-B natriuretic factor R1c subtype. Mol Cell Biochem 1994;137:173–82
  • Duda T, Goraczniak RM, Sitaramayya A, Sharma RK. Cloning and expression of an ATP-regulated human retina C-type natriuretic factor receptor guanylate cyclase. Biochemistry 1993;32:1391–5
  • Katafuchi T, Takashima A, Kashiwagi M, et al. Cloning and expression of eel natriuretic-peptide receptor B and comparison with its mammalian counterparts. Eur J Biochem 1994;222:835–42
  • Rambotti MG, Giambanco I, Spreca A. Detection of guanylate cyclases A and B stimulated by natriuretic peptides in gastrointestinal tract of rat. Histochem J 1997;29:117–26
  • Dean AD, Vehaskari VM, Ritter D, Greenwald JE. Distribution and regulation of guanylyl cyclase type B in the rat nephron. Am J Physiol 1996;270:F311–18
  • Schulz S, Green CK, Yuen PS, Garbers DL. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 1990;63:941–8
  • Cohen MB, Mann EA, Lau C, et al. A gradient in expression of the Escherichia coli heat-stable enterotoxin receptor exists along the villus-to-crypt axis of rat small intestine. Biochem Biophys Res Commun 1992;186:483–90
  • White AA, Krause WJ, Turner JT, Forte LR. Opossum kidney contains a functional receptor for the Escherichia coli heat-stable enterotoxin. Biochem Biophys Res Commun 1989;159:363–7
  • Vaandrager AB, Hogema BM, de Jonge HR. Molecular properties and biological functions of cGMP-dependent protein kinase II. Frontier Biosci 2005;10:2150–64
  • Vaandrager AB, Bot AG, Ruth P, et al. Differential role of cyclic GMP-dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology 2000;118:108–14
  • Vaandrager AB, Bot AG, De Jonge HR. Guanosine 3',5'-cyclic monophosphate-dependent protein kinase II mediates heat-stable enterotoxin-provoked chloride secretion in rat intestine. Gastroenterology 1997;112:437–43
  • Suzuki R, Takahashi A, Takei Y. Different molecular forms of C-type natriuretic peptide isolated from the brain and heart of an elasmobranch, Triakis scyllia. J Endocrinol 1992;135:317–23
  • Suzuki R, Togashi K, Ando K, Takei Y. Distribution and molecular forms of C-type natriuretic peptide in plasma and tissue of a dogfish, Triakis scyllia. Gen Comp Endocrinol 1994;96:378–84
  • Forrest JN Jr. Cellular and molecular biology of chloride secretion in the shark rectal gland: regulation by adenosine receptors. Kidney Int 1996;49:1557–62
  • Devor DC, Forrest JN Jr, Suggs WK, Frizzell RA. cAMP-activated Cl- channels in primary cultures of spiny dogfish (Squalus acanthias) rectal gland. Am J Physiol 1995;268:C70–9
  • Lehrich RW, Aller SG, Webster P, et al. Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium. J Clin Invest 1998;101:737–45
  • Marshall J, Martin KA, Picciotto M, et al. Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator. J Biol Chem 1991;266:22749–54
  • Solomon R, Protter A, McEnroe G, et al. C-type natriuretic peptides stimulate chloride secretion in the rectal gland of Squalus acanthias. Am J Physiol 1992;262:R707–11
  • Tilly BCH, Boris M, Kelley CA, et al. Cyclic GMP inhibtion of phosphodiesterase III mediates C-type natriuretic peptide (CNP) stimulation of chloride secretion in the rectal gland of the spiny dogfish (Squalus acanthias). MDI Biol Lab Bull 2009;48:27–30
  • Kelley CAK, Epstein A, Will SW, et al. Stimulation of chloride secretion by CNP is mediated by Cyclic GMP inhibtion of phosphodiesterase III in the rectal gland of the spiny dogfish, Squalus acanthias: evidence from in vitro perfusion studies. MDI Biol Lab Bull 2009;48:31–4
  • De Jonge HR, Tilly BC, Hogema BM, et al. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland. Am J Physiol Cell Physiol 2014;306:C343–53
  • Sullivan SK, Agellon LB, Schick R. Identification and partial characterization of a domain in CFTR that may bind cyclic nucleotides directly. Curr Biol: CB 1995;5:1159–67
  • Aller SG, Lombardo ID, Bhanot S, Forrest JN Jr. Cloning, characterization, and functional expression of a CNP receptor regulating CFTR in the shark rectal gland. Am J Physiol 1999;276:C442–9
  • Stahl M, Stahl K, Brubacher MB, Forrest JN Jr. Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101. Am J Physiol Cell Physiol 2012;302:C67–76
  • Bewley MS, Pena JT, Plesch FN, et al. Shark rectal gland vasoactive intestinal peptide receptor: cloning, functional expression, and regulation of CFTR chloride channels. Am J Physiol Regul, Integr Comparat Physiol 2006;291:R1157–64
  • Weber GJ, Mehr AP, Sirota JC, et al. Mercury and zinc differentially inhibit shark and human CFTR orthologues: involvement of shark cysteine 102. Am J Physiol Cell Physiol 2006;290:C793–801
  • Sandberg K, Bor M, Ji H, et al. Atrial natriuretic factor activates cyclic adenosine 3',5'-monophosphate phosphodiesterase in Xenopus laevis oocytes and potentiates progesterone-induced maturation via cyclic guanosine 5'-monophosphate accumulation. Biol Reprod 1993;49:1074–82
  • Nie HG, Chen L, Han DY, et al. Regulation of epithelial sodium channels by cGMP/PKGII. J Physiol 2009;587:2663–76
  • Hoenderop JG, Vaandrager AB, Dijkink L, et al. Atrial natriuretic peptide-stimulated Ca2+ reabsorption in rabbit kidney requires membrane-targeted, cGMP-dependent protein kinase type II. Proc Natl Acad Sci USA 1999;96:6084–9
  • Gambaryan S, Hausler C, Markert T, et al. Expression of type II cGMP-dependent protein kinase in rat kidney is regulated by dehydration and correlated with renin gene expression. J Clin Investig 1996;98:662–70
  • Millul V, Ardaillou N, Placier S, et al. Receptors for natriuretic peptides in a human cortical collecting duct cell line. Kidney Int 1997;51:281–7
  • Hamet P, Tremblay J, Pang SC, et al. Effect of native and synthetic atrial natriuretic factor on cyclic GMP. Biochem Biophys Res Commun 1984;123:515–27
  • Waldman SA, Rapoport RM, Murad F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 1984;259:14332–4
  • Chao AC, de Sauvage FJ, Dong YJ, et al. Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J 1994;13:1065–72
  • Guo LJ, Alli AA, Eaton DC, Bao HF. ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling. Am J Physiol Renal Physiol 2013;304:F930–7
  • Murray AJ. Pharmacological PKA inhibition: all may not be what it seems. Sci Signal 2008;1:re4
  • Vaandrager AB, Hogema BM, Edixhoven M, et al. Autophosphorylation of cGMP-dependent protein kinase type II. J Biol Chem 2003;278:28651–8
  • Lohmann SM, Walter U. Tracking functions of cGMP-dependent protein kinases (cGK). Frontier Biosci: a Journal and Virtual Library 2005;10:1313–28
  • French PJ, Bijman J, Edixhoven M, et al. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II. J Biol Chem 1995;270:26626–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.