311
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Targeting of herbal bioactives through folate receptors: a novel concept to enhance intracellular drug delivery in cancer therapy

, , &
Pages 314-323 | Received 09 Aug 2015, Accepted 25 Jan 2016, Published online: 17 Jan 2017

References

  • Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 2006;114:277–87
  • Alexis F, Pridgen E, Molnar LK, et al Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5:505–15
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2:750–63
  • Bae Y, Nishiyama N, Fukushima S, et al Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 2004;16:122–30
  • Bartlett DW, Su H, Hildebrandt IJ, et al Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 2007;104:15549–54
  • Bertin PA, Gibbs JM, Shen CK, et al Multifunctional polymeric nanoparticles from diverse bioactive agents. J Am Chem Soc 2006;28:4168–9
  • Bhatia RSN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2000;188:759–68
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649–59
  • Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007;3:1840–54
  • Cairns R, Papandreou I, Denko N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 2006;4:61–70
  • Caliceti P, Salmaso S, Semenzato A, et al Synthesis and physicochemical characterization of folate-cyclodextrin bioconjugate for active drug delivery. Bioconjug Chem 2003;14:899–908
  • Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;5:309–19
  • Danhier F, Ansorena E, Silva JM, et al PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;61:505–22
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771–82
  • Desai N, Trieu V, Yao Z, et al Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 2006;12:1317–24
  • Dhar S, Gu FX, Langer R, Farokhzad OC, et al Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 2008;10:7356–61
  • (a.) Patri AK, Kukowska-Latallo JF, Baker JR. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005;57:2203–14. (b.) Vyas SP, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery. Adv Drug Deliv Rev 2000;43:101–64
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145–60
  • Dubernet BC, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631–51
  • Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 2004;56:1067–84
  • Enyedy AÉ, Farkas E, Dömötör O, et al Interaction of folic acid and some matrix metalloproteinase (MMP) inhibitor folate-Γ-hydroxamate derivatives with Zn(Ii) and human serum albumin. J Inorg Biochem 2011;105:444–53
  • Paulos CM, Reddy JA, Leamon CP, et al Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Mol Pharmacol 2004;66:1406–14
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009;3:16–20
  • Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006;3:311–24
  • Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006;58:1456–9
  • Petros RA, Desimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9:615–27
  • Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 2001;19:424–36
  • Ganta S, Devalapally H, Shahiwala A, et al A review of stimuli-responsive nano-carriers for drug and gene delivery. J Control Release 2008;126:187–204
  • Gao X, Yang L, Petros JA, et al In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 2005;16:63–72
  • Grant L, Zwicke G, Mansoori A, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 2012;3:34–43
  • Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 2009;61:1203–13
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19:311–30
  • Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 2009;100:572–9
  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 2005;94:2135–46
  • Hou Z, Zhan C, Jiang Q, et al Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Res Lett 2011;6:563–6
  • Inen HJR, Sainio A, Koulu M, et al Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2009;61:198–223
  • Jaracz S, Chen J, Kuznetsova LV, et al Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 2005;13:5043–54
  • Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 2005;1:101–9
  • Khoee S, Rahmatolahzadeh R. Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: a comprehensive kinetic study. Eur J Med Chem 2012;50:416–27
  • Kim D, Lee ES, Park K, et al Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor. Pharm Res 2008;25:2074–82
  • Kim SH, Kim JK, Lim SJ, et al Folate-tethered emulsion for the target delivery of retinoids to cancer cells. Eur J Pharm Biopharm 2008;68:618–25
  • Kim SL, Jeong HJ, Kim EM, et al Folate receptor targeted imaging using poly (ethylene glycol)-folate: in vitro and in vivo studies. J Korean Med Sci 2007;22:405–11
  • Krystofiak ES, Matson VZ, Steeber DA, Oliver JA. Elimination of tumor cells using folate receptor target antibody-conjugated, gold-coated magnetite nanoparaticles in a murine breast cancer model. J Nanomaterials 2012;2012:431012
  • Livney SYD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Update 2011;14:150–63
  • Votruba SJ, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010;10:3223–30
  • Kukowska-Latallo JF, Candido KA, Cao Z, et al Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005;65:5317–24
  • Mcewan JF, Jones R, John G. Amplification of folate-mediated targeting to tumor cells using polymers. Patent WO 2000066091 A1, 9 Nov 2000
  • Chao Q, Grasso L, O’Shannessy DJ, et al Folate receptor alpha as a diagnostic and prognostic marker for folate receptor alpha-expressing cancers. Patent WO 2012061759 A2, 10 May 2012
  • Kennedy MD, Low P. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology. US Patent 8,043,603 B2, 25 Oct 2011
  • Low PS, Lu Y. Method of treatment using ligand-immunogen conjugates. Patent US 7,033,594 B2, 25 Apr 2006
  • Leamon CP. Folate mimetics and folate-receptor binding conjugates thereof. Patent US 20050227985A9, 1 Dec 2011
  • Allen TM, Uster P, Martin FJ. Therapeutic liposome composition and method of preparation. US Patent 6,316,024 B1, 13 Nov 2001
  • Low PS, Poh S. Delivery of therapeutic agents to inflamed tissues using folate-targeted agents. Patent WO 2011150392 A1, 1 Dec 2011
  • Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 2001;6:44–51
  • Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv Rev 2004;56:1127–41
  • Lu Y, Ding N, Yang C, et al Preparation and in vitro evaluation of a folate-linked liposomal curcumin formulation. J Liposome Res 2012;22:110–19
  • Zhang L, Zhu W, Yang C, et al A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomedicine 2012;7:151–62
  • Dosio F, Milla P, Cattel L. EC-145, a folate-targeted Vinca alkaloid conjugate for the potential treatment of folate receptor-expressing cancers. Curr Opin Investig Drugs 2010;11:1424–33
  • Narayanan S, Binulal NS, Mony U, et al Folate targeted polymeric ‘green’ nanotherapy for cancer. Nanotechnology 2010;21:16–21
  • Lee JW, Lu JY, Low PS, et al Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics. Bioorg Med Chem 2002;10:2397–414
  • Vortherms AR, Doyle RP, Gao D, et al Synthesis, characterization, and in vitro assay of folic acid conjugates of 3′-azido-3′-deoxythymidine (AZT): toward targeted AZT based anticancer therapeutics. Nucleosides Nucleotides Nucleic Acids 2008;27:173–85
  • Stevanovi M, Radulovi A, Jordovi B, Uskokovi D. Poly(DL-lactide-co-glycolide) nanospheres for the sustained release of folic acid. J Biomed Nanotech 2008;4:1–10
  • Misaka H, Zacharias, N, Song Z, et al Skin cancer treatment by albumin/5-Fu loaded magnetic nanocomposite spheres in a mouse model. J Biotechnol 2013;164:130–6
  • Du C, Deng D, Shan L, et al A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials 2013;34:3087–97
  • Zhang C, Zhao LQ, Dong YF, et al Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur J Pharm Biopharm 2010;76:10–6
  • Pérez L, Artetxe M, Cesteros LC, Katime I. Doubly PEG-modified folate targeted chitosan nanoparticles. J Appl Polym Sci 2006;102:1162–6
  • Chen H, Ahn R, Bossche JV, et al Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol Cancer Ther 2009;8:1955–63
  • Lin JJ, Chen JS, Huang SJ, et al Folic acid-pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 2009;30:5114–241
  • Esmaeili F, Ghahremani MH, Ostad SN, et al Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target Drug 2008;16:415–23
  • Sharma M, Malik R, Verma A, et al Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer. J Biomed Nanotechnol 2013;9:96–106
  • Patlolla RR, Vobalaboina V. Folate-targeted etoposide-encapsulated lipid nanospheres. J Drug Target 2008;16:269–75
  • Gabano E, Ravera M, Cassino C, et al Stepwise assembly of platinum–folic acid conjugates. Inorg Chim Acta 2008;361:1447–55
  • Morris VB, Sharma CP. Folate mediated l-arginine modified oligo (alkylaminosiloxane) graft poly (ethyleneimine) for tumor targeted gene delivery. Biomaterials 2011;32:3030–41
  • Mi Y, Liu Y, Shen Feng S. Formulation of docetaxel by folic acid-conjugated d-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS(2k)) micelles for targeted and synergistic chemotherapy. Biomaterials 2011;32:4058–66
  • Yang X, Chen Y, Yuan R, et al Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer 2008;49:3477–85
  • Hassanzadeh VF, Sadeghi H, Banitalebi M, et al, Folate-targeted micellar nanocapsules of dextran/retinoic acid for doxorubicin delivery in acute leukemia. Proceedings of the 4th International Conf. on Nanostructures (ICNS) Kish Island, I.R. Iran; 2012 12–14; pp. 738–40
  • Shmeeda H, Mak L, Tzemach D, et al Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 2006;5:818–24
  • Díaz MG, Nonell S, Villanueva Á, et al Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity? Biochim Biophys Acta 2011;1808:1063–71
  • Gupta Y, Jain A, Jain P, et al Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J Drug Target 2007;15:231–40
  • Quintana A, Raczka E, Piehler L, et al Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002;19:1310–16
  • Wang H, Zheng L, Peng C, et al Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 2013;34:470–80
  • Zhang M, Guo R, Wang Y, et al Multifunctional dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer therapy. Int J Nanomedicine 2011;6:2337–49
  • Zhang L, Gu FX, Chan JM, et al Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2007;83:761–9
  • Stevens PJ, Lee RJ. A folate receptor-targeted emulsion formulation for paclitaxel. Anticancer Res 2003;23:4927–31
  • Nukolova NV, Oberoi HS, Cohen SM, et al Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 2011;32:5417–26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.