431
Views
36
CrossRef citations to date
0
Altmetric
Research Article

Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase

, , , &
Pages 60-70 | Received 09 Feb 2016, Accepted 09 Mar 2016, Published online: 05 May 2016

References

  • Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 2007;5:873–82.
  • Alvar J, Velez ID, Bern C, et al. Team WHOLC. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012;7:e35671.
  • Prajapati VK, Mehrotra S, Gautam S, et al. In vitro antileishmanial drug susceptibility of clinical isolates from patients with Indian visceral leishmaniasis-status of newly introduced drugs. Am J Trop Med Hyg 2012;87:655–7.
  • Seaman J, Mercer AJ, Sondorp HE, Herwaldt BL. Epidemic visceral leishmaniasis in southern Sudan: treatment of severely debilitated patients under wartime conditions and with limited resources. Ann Intern Med 1996;124:664–72.
  • Bern C, Adler-Moore J, Berenguer J, et al. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis 2006;43:917–24.
  • Ritmeijer K, Dejenie A, Assefa Y, et al. A comparison of miltefosine and sodium stibogluconate for treatment of visceral leishmaniasis in an Ethiopian population with high prevalence of HIV infection. Clin Infect Dis 2006;43:357–64.
  • Wasunna MK, Rashid JR, Mbui J, et al. A phase II dose-increasing study of sitamaquine for the treatment of visceral leishmaniasis in Kenya. Am J Trop Med Hyg 2005;73:871–6.
  • Brun R, Don R, Jacobs RT, et al. Development of novel drugs for human African trypanosomiasis. Future Microbiol 2011;6:677–91.
  • Qiao Z, Wang Q, Zhang F, et al. Chalcone-benzoxaborole hybrid molecules as potent antitrypanosomal agents. J Med Chem 2012;55:3553–7.
  • Fairlamb AH, Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 1992;46:695–729.
  • Angiulli G, Lantella A, Forte E, et al. Leishmania infantum trypanothione reductase is a promiscuous enzyme carrying an NADPH:O2 oxidoreductase activity shared by glutathione reductase. Biochim Biophys Acta 2015;1850:1891–7.
  • Shukla AK, Patra S, Dubey VK. Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite. Eur J Med Chem 2012;54:49–58.
  • Sharma N, Shukla AK, Das M, Dubey VK. Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitol Res 2012;110:341–8.
  • Shukla AK, Patra S, Dubey VK. Deciphering molecular mechanism underlying antileishmanial activity of Nyctanthes arbortristis, an Indian medicinal plant. J Ethnopharmacol 2011;134:996–8.
  • Saudagar P, Saha P, Saikia AK, Dubey VK. Molecular mechanism underlying antileishmanial effect of oxabicyclo[3.3.1]nonanones: inhibition of key redox enzymes of the pathogen. Eur J Pharm Biopharm 2013;85:569–77.
  • Beig M, Oellien F, Garoff L, et al. Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach. PLoS Negl Trop Dis 2015;9:e0003773.
  • Shoichet BK. Virtual screening of chemical libraries. Nature 2004;432:862–5.
  • Dill KA. Additivity principles in biochemistry. J Biol Chem 1997;272:701–4.
  • Singh DB, Gupta MK, Singh DV, et al. Docking and in silico ADMET studies of noraristeromycin, curcumin and its derivatives with Plasmodium falciparum SAH hydrolase: a molecular drug target against malaria. Interdiscip Sci 2013;5:1–12.
  • Prime v, Schrödinger. New York, NY: LLC; 2015.
  • Protein Preparation Wizard 2015-2; Epik version 2.4 S, LLC, New York, NY, 2015;, Impact version 5.9 S, LLC, New York, NY, 2015; Prime version 3.2, Schrödinger, LLC NY, NY, 2015.
  • LigPrep v, Schrödinger. New York, NY: LLC; 2015.
  • Epik v, Schrödinger. New York, NY: LLC; 2015.
  • Verma RK, Prajapati VK, Verma GK, et al. Molecular docking and in vitro antileishmanial evaluation of chromene-2-thione analogues. ACS Med Chem Lett 2012;3:243–7.
  • Glide v, Schrödinger. New York, NY: LLC; 2015.
  • Waldman M, Fraczkiewicz R, Clark R. Tales from the war on error: the art and science of curating QSAR data. J Comput Aided Mol Des 2015;29:897–910.
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785–91.
  • Baiocco P, Colotti G, Franceschini S, Ilari A. Molecular basis of antimony treatment in leishmaniasis. J Med Chem 2009;52:2603–12.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.
  • Rai A, Gupta TK, Kini S, et al. CXI-benzo-84 reversibly binds to tubulin at colchicine site and induces apoptosis in cancer cells. Biochem Pharmacol 2013;86:378–91.
  • Rashid A, Kuppa A, Kunwar A, Panda D. Thalidomide (5HPP-33) suppresses microtubule dynamics and depolymerizes the microtubule network by binding at the vinblastine binding site on tubulin. Biochemistry 2015;54:2149–59.
  • Venghateri JB, Gupta TK, Verma PJ, et al. Ansamitocin P3 depolymerizes microtubules and induces apoptosis by binding to tubulin at the vinblastine site. PLoS One 2013;8:e75182.
  • Gundampati RK, Shraddha S, Sonkar KS, et al. In silico studies on complete inhibition of trypanothione reductase of Leishmania infantum by γ-sitosterol and antcin-A: novel target for anti-leishmanial activity. Am J Biochem Mol Biol 2013;3:322–8.
  • Rodrigues RF, Castro-Pinto D, Echevarria A, et al. Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies. Bioorg Med Chem 2012;20:1760–6.
  • Baiocco P, Poce G, Alfonso S, et al. Inhibition of Leishmania infantum trypanothione reductase by azole-based compounds: a comparative analysis with its physiological substrate by X-ray crystallography. ChemMedChem 2013;8:1175–83.
  • Cereto-Massagué A, Guasch L, Valls C, et al. DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics 2012;28:1661–2.
  • Case D, Darden T, Cheatham III T, et al. Amber 12 reference manual. San Francisco: University of California; 2012.
  • Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 2006;25:247–60.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem 2004;25:1157–74.
  • Andersen HC. RATTLE: a “Velocity” version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys 1983;52:24–34.
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys 1995;103:8577–93.
  • DeLano W. The PyMol molecular graphics system, Version 1.1. Schrodinger, LLC. New York, NY; 2002.
  • Perry MR, Prajapati VK, Menten J, et al. Arsenic exposure and outcomes of antimonial treatment in visceral leishmaniasis patients in Bihar, India: a retrospective cohort study. PLoS Negl Trop Dis 2015;9:e0003518.
  • Prajapati VK, Awasthi K, Gautam S, et al. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother 2011;66:874–9.
  • Prajapati VK, Sharma S, Rai M, et al. In vitro susceptibility of Leishmania donovani to miltefosine in Indian visceral leishmaniasis. Am J Trop Med Hyg 2013;89:750–4.
  • Sundar S, Singh A, Rai M, et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis 2012;55:543–50.
  • Prajapati VK, Awasthi K, Yadav TP, et al. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J Infect Dis 2012;205:333–6.
  • Pandey RK, Sharma D, Bhatt TK, et al. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach. J Biomol Struct Dyn 2015;33:2541–53.
  • Pandey RK, Kumbhar BV, Srivastava S, et al. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. J Biomol Struct Dyn 2016;1–18. doi:10.1080/07391102.2015.1135298.
  • Hu QH, Liu RJ, Fang ZP, et al. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci Rep 2013;3:2475.
  • Nare B, Wring S, Bacchi C, et al. Discovery of novel orally bioavailable oxaborole 6-carboxamides that demonstrate cure in a murine model of late-stage central nervous system african trypanosomiasis. Antimicrob Agents Chemother 2010;54:4379–88.
  • Zhang YK, Plattner JJ, Easom EE, et al. Benzoxaborole antimalarial agents. Part 4. Discovery of potent 6-(2-(alkoxycarbonyl)pyrazinyl-5-oxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles. J Med Chem 2015;58:5344–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.