7
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Structure-Function Relationships for Hormone Receptors and Adenylate Cyclase: The Contribution of Target Size Analysis

Pages 339-357 | Published online: 26 Sep 2008

References

  • Lea D. E. Actions of Radiation on living cells. Cambridge University Press. 1955
  • Pollard E. C., Guild W. R., Hutchinson F., Setlow R. B. Radiation target analysis. Prog. Biophys. 1955; 5: 72–108
  • Kepner G. R., Macey R. I. Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim. Biophys. Acta 1968; 163: 188–203
  • Kempner E. S., Schlegel W. Size determination of enzymes by radiation inactivation. Anal. Biochem. 1979; 92: 2–10
  • Schlegel W., Kempner E. S., Rodbell M. Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins. J. Biol. Chem. 1979; 254: 5168–5176
  • Kempner E. S., Manuscript in preparation.
  • Kempner E. S., Miller J. H., Schlegel W., Hearon J. Z. The functional unit of polyenzymes. Determination by radiation inactivation. J. Biol. Chem. 1980; 255: 6826–6831
  • Kincaid R. L., Kempner E., Manganiello V. C., Osborne J. C., Vaughan M. Calmodulin-activated cyclic nucleotide phosphodiesterase from brain. Relationship of subunit structure to activity assessed by radiation inactivation. J. Biol. Chem. 1981; 256(21)11351–11355
  • Harmon J. T., Kahn C. R., Kempner E. S., Schlegel W. Characterization of the insulin receptor in its membrane environment by radiation inactivation. J. Biol. Chem. 1980; 255: 3412–3419
  • Harmon J. T., Kempner E. S., Kahn C. R. Demonstration by radiation inactivation that insulin alters the structure of the insulin receptor in rat liver membranes. J. Biol. Chem. 1981; 256: 7719–7722
  • Pollet R. J., Kempner E. S., Standaert M. L., Haase B. A. Structure of the insulin receptor of the cultured human lymphoblastoid cell IM-9. Evidence suggesting that two subunits are required for insulin binding. J. Biol. Chem. 1982; 257: 894–898
  • Nielsen T. B., Lad P. M., Preston M. S., Kempner E., Schlegel W., Rodbell M. Structure of the turkey erythrocyte adenylate cyclase system. Proc. Natl. Acad. Sci. 1981; 78: 722–726
  • Innerarity T. L., Kempner E. S., Hui D. Y., Mahley R. W. Functional unit of the low density lipoprotein receptor of fibroblasts: A 100,000-dalton structure with multiple binding sites. Proc. Natl. Acad. Sci. 1981; 78: 4378–4382
  • Steer C. J., Kempner E. S., Ashwell G. Molecular size of the hepatic receptor for asialoglycoproteins determined in situ by radiation inactivation. J. Biol. Chem. 1981; 256: 5851–5856
  • Fewtrell C., Kempner E., Poy G., Metzger H. Unexpected findings from target analysis of immunoglobulin E and its receptor. Biochemistry 1981; 20: 6589–6594
  • Czech M. P., Massague J., Pilch P. F. The insulin receptor: structural features. TIBS 1981; 68: 222–225
  • Jacobs S., Cuatrecasas P. Insulin receptor: structure and function. Endocrine Rev. 1981; 2: 251–263
  • Rodbard D. Negative cooperativity: a positive finding. Am. J. Physiology 1979; 237: E203–205
  • Olefsky J. M., Kobayashi M., Chang H. Interactions between insulin and its receptors after the initial binding event. Functional heterogeneity and relationships to insulin degradation. Diabetes 1979; 28: 460–471
  • Donner D. B., Corin R. E. Formation of a receptor state from which insulin dissociates slowly in hepatic cells and plasma membranes. J. Biol. Chem. 1980; 255: 9005–9008
  • De Meyts P., Bianco A. R., Roth J. Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J. Biol. Chem. 1976; 251: 1877–1888
  • Pollet R. J., Standaert M. L., Haase B. A. Insulin binding to the human lymphocyte receptor. Evaluation of the negative cooperativity model. J. Biol. Chem. 1977; 252: 5828–5834
  • Corin R. E., Donner D. B. Insulin receptors convert to a higher affinity state subsequent to hormone binding. A two-state model for the insulin receptor. J. Biol. Chem. 1982; 257: 104–110
  • Harmon J. T., Hedo J. A. Characterization of the chemical and functional nature of a membrane regulator of insulin receptor affinity. 63rd Meeting Endocrine Society (Cincinatti), abstract No 259. 1981; 147
  • Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 1980; 284: 17–22
  • Spiegel A. M, Downs R. W. Guanine Nucleotides: Key regulators of hormone receptor-adenylate cyclase interaction. Endocrine Reviews 1981; 2: 275–305
  • Ross E. M., Gilman A. G. Adenylate cyclase. Annu. Rev. Bio-chem 1980; 49: 533–564
  • Pfeuffer Th. Guanine nucleotide-controlled interactions between components of adenylate cyclase. FEBS Letts 1979; 101: 85–89
  • Strittmatter S., Neer E. J. Properties of the separated catalytic and regulatory units of brain adenylate cyclase. Proc. Natl. Acad. Sci 1980; 77: 6344–6348
  • Stengel D., Hanoune J. The catalytic unit of ram sperm adenylate cyclase can be activated through the guanine nucleotide regulatory component and prostaglandin receptors of human erythrocyte. J. Biol. Chem. 1981; 256: 5394–5398
  • Bourne H. R., Coffino P., Tomkins G. M. Selection of a variant lymphoma cell deficient in adenylate cyclase. Science 1975; 187: 750–752
  • Ross E. M., Howlett A. C., Ferguson K. M., Gilman A. G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem 1978; 253: 6401–6412
  • Stengel D. Thesis work to be published, 1981
  • Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J. Biol. Chem. 1981; 256: 11517–11526
  • Hanski E., Sternweis P. C., Northup J. K., Dromerick A. W., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties of the turkey erythrocyte protein. J. Biol. Chem. 1981; 256: 12911–12919
  • Johnson G. L., MacAndrew V. I., Pilch P. F. Identification of the glucagon receptor in rat liver membranes by photoaffinity crosslinking. Proc. Natl. Acad. Sci. 1981; 78: 875–878
  • Atlas D., Levitzki A. Tentative identification of β-adreno-receptor subunits. Nature 1978; 272: 370–371
  • Strosberg A. D., Vauquelin G., Durieu-Trautmann O., Delavier-Klutchko C., Bottari S., Andre C. Towards the chemical and functional characterization of the β-adrenergic receptor. TIBS 1980; 5: 11–14
  • Martin R. B., Stein J. M., Kennedy E. L., Doberska C. A., Metcalfe J. C. Transient complexes. A new structural model for the activation of adenylate cyclase by hormone receptors (guanine nucleotides irradiation inactivation). Biochem. J. 1979; 184: 253–260
  • Cassel D., Selinger Z. Mechanism of adenylate cyclase activation through the β-adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP. Proc. Natl. Acad. Sci. 1978; 75: 4155–4159
  • Swillens S;, Dumont J. E. A pitfall in the interpretation of data on adenylate cyclase inactivation by irradiation. FEBS Letts 1981; 134: 29–31
  • Schlegel W., Cooper D. M.F., Rodbell M. Inhibition and activation of fat cell adenylate cyclase by GTP is mediated by structures of different size. Arch. Biochem. Biophys. 1980; 201: 678–682
  • Manganiello V. C., Vaughan M. Activation and inhibition of fat cell adenylate cyclase by fluoride. J. Biol. Chem. 1976; 251: 6205–6209

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.