3
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Identification and Characterization of a Specific Receptor for Cholecystokinin on Isolated Fundic Glands from Guinea Pig Gastric Mucosa Using a Biologically Active 125I-CCK-8 Probe

, &
Pages 647-665 | Published online: 26 Sep 2008

References

  • Konturek S. J. Gastrointestinal Hormones, G. B.J. Glass. Raven Press, New York NY 1980; 529–564
  • Grossman M. I. Physiology of the Digestive Tract, L. R. Johnson. Raven Press, New York 1981; 659–671
  • Soll A. H., Grossman M. I. The interaction of stimulants on the function of isolated canine parietal cells. Phil. Trans. R. Soc. Long. B 1981; 296: 5–15
  • Davison J. S., Najafi-Farashah A. The effect of dibutyryl cyclic guanosine monophosphate, a competitive antagonist to cholecystokinin-pancreozymin, on gastric acid secretion in the isolated mouse stomach. Life Sciences 1982; 31: 355–361
  • Chew C. S., Hersey S. J. Gastrin stimulation of isolated gastric glands. Am. J. Physiol. 1982; 242: G504–G512
  • Ito S. Physiology of the Gastrointestinal Tract, L. R. Johnson. Raven Press, New York, NY, 517–550
  • Code C. F. Histamine and gastric secretion: a later look, 1955-1965. Fed. Proc. 1965; 24: 1311–1321
  • Blacke J. W., Duncan W. A.M., Durant C. J., Ganellin C. R., Parsons M. E. Definition and atogonism of histamine H2- receptors. Nature 1972; 236: 385–390
  • El Munshid H. A., Hakanson R., Liedberg G., Sundler F. Effects of various gastrointestinal peptides on parietal cells and endocrine cells in the oxyntic mucosa of rat stomach. J. Physiol. 1980; 305: 249–265
  • El Munshid H. A., Liedberg G., Rehfeld J. F., Sundler F, Larrson L-I, Hakanson R. Effect of bilateral nephrectomy on serum gastrin concentration, gastric histamine content, histidine decarboxylase activity, and acid secretion in the rat. Scand. J. Gastroenterol. 1976; 11: 87–91
  • Baur S., Bacon V. C. A specific gastrin receptor on plasma membranes of antral smooth muscle. Biochem. Biophys. Res. Comm. 1976; 73: 928–933
  • Brown J., Gallagher N. D. A specific gastrin receptor site in the rat stomach. Biochem. Biophys. Acta 1978; 538: 42–49
  • Takeuchi K., Speir G. R., Johnson L. R. Mucosal gastrin receptor. I. Assay standardization and fulfillment of receptor criteria. Am. J. Physiol. 1979; 237(3)E284–E294
  • Soumarmon A., Cheret A. M., Lewin M. J.M. Localization of gastrin receptors in intact isolated and separated rat fundic cells. Gastroenterology 1977; 73: 900–903
  • Magous R., Bali J. P., Moroder L, Previero A. Effect of Nin-Formylation of the tryptophan residue on gastrin (HG-13)binding and on gastric acid secretion. Eur. J. Pharm. 1982; 77: 11–16
  • Brooks A. M., Agosti A., Bertaccini G., Grossman M. I. Inhibition of gastric acid secretion in man by peptide analogues of cholecystokinin. N. Eng. J. Med. 1970; 282(10)535–538
  • Saik R. P., Anson N., Peskin G. W. Gastrin-related compounds and their effect on gastric-acid and gastrin output in the dog. J. Surg. Res. 1975; 18: 485–490
  • Desvigne C., Gelin M. L., Vagne M., Roche M. Effect of cholecystokinin and pentagastrin on motility and gastric secretion in the cat. Digestion 1980; 20: 265–276
  • Praissman M., Izzo R., Berkowitz J. M. Modification of the C-terminal octapeptide of cholecystokinin with a high-specific-activity iodinated imidoester: preparation, characterization, and binding to isolated pancreatic acinar cells. Anal. Biochem. 1982; 121: 190–198
  • Berglindh T., Helander H. F., Obrink K. J. Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands, Acta Physiol. Scand. 1976; 97: 401–414
  • Chew C. S., Hersey S. J., Sach S. G., Berglindh T. Histamine responsiveness of isolated gastric glands. Am. J. Physiol. 1980; 238: G312–320
  • Hersey S. J., May D., Schyberg D. Stimulation of pepsinogen release from isolated gastric glands by cholecystokinin-like peptides. Am. J. Physiol. 1983; 244: G192–G197
  • Berglindh T., Obrink K. J. A method for preparing isolated glands from the rabbit gastric mucosa. Acta Physiol. Scand. 1976; 96: 150–159
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Cerriotti G. A microchemical determination of deoxyribonucleic acid. J. Biol. Chem. 1952; 198: 297–303
  • Praissman M., Fara J. W., Praissman L., Berkowitz J. M. Preparation of an n-acetyl-octapeptide of cholecystokinin: the role of n-acetylation in protecting the octapeptide from degradation by smooth muscle tissues. Biochem. Biophys. Acta 1982; 716: 240–249
  • Jensen R. T., Lemp G. F., Gardner J. D. Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. 1980; 77(4)2079–2083
  • Sankaran H., Goldfine I. D., Deveney C. W., Wong K. Y., Williams J. A. Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini. J. Biol. Chem. 1980; 255: 1849–1853
  • Miller L. J., Rosenzweig S. A., Jamieson J. D. Preparation and characterization of a probe for the cholecystokinin octapeptide receptor, N (125I-desaminotyrosyl)CCK-8, and its interactions with pancreatic acini. J. Biol. Chem. 1981; 256(23)12417–12423
  • Steigerwalt R. W., Williams J. A. Characterization of cholecystokinin receptors on rat pancreatic membranes. Endocrinology 1981; 109: 1746–1753
  • Innis R. B., Snyder S. H. Distinct cholecystokinin receptors in brain and pancreas. Proc. Natl. Acad. Sci. (USA) 1980; 77: 6917–6921
  • Saito A., Sankaran H., Goldfine I. D., Williams J. A. Cholecystokinin receptors in the brain: characterization and distribution. Science 1980; 208: 1155–1156
  • Praissman M., Martinez P. A., Saladino C. F., Berkowitz J. M., Steggles A. W., Finkelstein J. A. Characterization of cholecystokinin binding sites in rat cerebral cortex using a 125I-CCK-8 probe resistant to degradation. J. Neurochemistry 1982; 40: 1406–1413
  • , The separation and isolation of pure populations of parietal and chief cells would permit a resolution of this question by direct binding studies. However, existing methodologies for these separations are generally complex and require long isolation times (35,36,37) that might affect cell viability. In addition, cell enrichments generally do not exceed 70 to 80% which could complicate the interpretation of radioligand binding data under certain circumstances. Nevertheless, we have concentrated on the gastric gland because it represents a basic functional unit within the intact gastric mucosa which can be isolated under relatively mild conditions and with retention of a high degree of responsiveness to chemical and peptide secretatogues
  • Soll A. H. The actions of secretagogues on oxygen uptake by isolated mammalian parietal cells. J. Clin. Investigation 1978; 61: 370–380
  • Soll A. H. Secretagogue stimulation of (14C)aminopyrine accumulation by isolated canine parietal cells. Am. J. Physiol. 1980; 238: G366–G375
  • Thompson W. J., Chang L. K., Rosenfeld G. C. Histamine regulation of adenylyl cyclase of enriched rat gastric parietal cells. Am. J. Physiol. 1981; 240: G76–G84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.