3
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Agonist Interactions with Beta-Adrenergic Receptors Following Chronic Administration of Desipramine or the Atypical Antidepressants, Iprindole and Mianserin

&
Pages 311-334 | Published online: 26 Sep 2008

References

  • Sugrue M. F. Some effects of chronic antidepressant treatments on rat brain monoaminergic systems. J. Neural. Transmission 1983; 57: 281–295
  • Frazer A., Pandey G, Mendels J., Neeley S., Kane M., Hess M. E. The effect of tri-iodothyronine in combination with imipramine on [3H]-cyclic AMP production in slices of rat cerebral cortex. Neuropharmacology 1974; 13: 1131–1140
  • Sugrue M. F. Chronic antidepressant therapy and associated changes in central monoaminergic receptor functioning. Pharmacology and Therapeutics 1983; 21: 1–33
  • Sulser F., Vetulani J., Mobley P. L. Mode of action of antidepressant drugs. Biochem. Pharmacol. 1978; 27: 257–261
  • De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 1980; 255: 7108–7117
  • Lefkowitz R. J., Stadel J. M., Cerione R. A., Strulovici B., Caron M. G. Structure and function of β-adrenergic receptors: Regulation at the molecular level. Advances in Cyclic Nucleotide and Protein Phosphorylation Research, P. Greengard. Raven Press, New York 1984; Vol. 17: 19–28
  • Sethy V. H., Harris D. W. Role of beta-adrenergic receptors in the mechanism of action of second-generation antidepressants. Drug Dev. Res. 1982; 2: 403–406
  • Ursillo R. C., Wiech N. L., Reisine T. D., Yamamura H. L. Mechanism of action of antidepressants. Psychopharmacology and Biochemistry of Neurotransmitter Receptors, H. I. Yamamura. Elsevier/North Holland, New York 1982; 189–202
  • Olpe H.-R., Schellenberg A., Steinaann H. W. differential actions of mianserin and iprindole on the sensitivity of cortical neurons to noradrenaline: Effect of chronic treatment. Europ. J. Pharmacol. 1981; 72: 381–385
  • Mishra R., Janowsky A., Sulser F. Action of mianserin and zimelidine on the norepinephrine receptor coupled adenylate cyclase system in brain: Subsensitivity without reduction in β-adrenergic receptor binding. Neuropharmacology 1980; 19: 983–987
  • Janowsky A., Steranka L. R., Gillespie D. D., Sulser F. Role of neuronal signal input in the down-regulation of central noradrenergic receptor function by antidepressant drugs. J. Neurochem. 1982; 39: 290–292
  • Engel G., Hoyer D., Berthold R., Wagner H. (±) [125Iodo]cyanopindolol, a new ligand for β-adrenoceptors: Identification and quantitation of subclasses of β-adrenoceptors in guinea pig. Naunyn-Schmiedeberg's Arch. Pharmacol. 1981; 317: 277–285
  • Burgisser E., Hancock A. A., Lefkowitz R., Lean A. Anomalous equilibrium binding properties of high-affinity racemic radioligands. Mol. Pharmacol. 1981; 19: 205–216
  • Hancock A. A. A rapid, economical technique for removing radioactivity from receptor binding assay aqueous wastes. Health Physics 1984; 47: 640–641
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Hancock A. A., DeLean A. L., Lefkowitz R. J. Quantitative resolution of beta-adrenergic receptor subtypes by selective ligand binding: Application of a computerized model fitting technique. Mol. Pharmacol. 1979; 16: 1–9
  • Hancock A. A., Marsh C. L. Distinctions between ligand binding sites for [3H]dopamine and D-2 dopaminergic receptors characterized with [3H]-spiroperidol. Mol. Pharmacol. 1984; 26: 439–451
  • Doyle V. M., Buhler F. R., Burgisser E. Inappropriate correction for radioactive decay in fully iodinated adrenergic radioligands. Europ. J. Pharmacol. 1984; 99: 353–356
  • Kent R. S., DeLean A., Lefkowitz R. J. A quantitative analysis of beta-adrenergic receptor interactions: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol. Pharmacol. 1980; 17: 14–23
  • Petrovic S. L., McDonald J. K., Snyder G., Mc Cann S. M. Characterization of β-adrenergic receptors in rat brain and pituitary using a new high affinity ligand, [125I]Iodocyanopindolol. Brain Research 1983; 261: 249–259
  • Hoyer D., Engel G., Berthold R. Binding characteristics of (+)-, (±)- and (−)-[125Iodo]cyanpindolol to guinea pig left ventricle membranes. Naunyn-Schmiedeberg's Arch. Pharmacol. 1982; 318: 319–329
  • Wiech N. L., Ursillo R. C. Acceleration of desipramine-induced decrease of rat corticocerebral β-adrenergic receptors by yohimbine. Communications in Psychopharmacology 1980; 4: 95–100
  • Stadel J. M., Strulovici B., Nambi P., Lavin T. N., Briggs M. M., Caron M. G., Lefkowitz R. J. Desensitization of the β-adrenergic receptor of frog erythrocytes. Recovery and characterization of the down-regulated receptors in sequestered vesicles. J. Biol. Chem. 1983; 258: 3032–3038
  • Wiech N. L., Personal communication
  • Minneman K. P., Dibner M. D., Wolfe B. B., Molinoff P. B. β1- and β2-adrenergic receptors in rat cerebral cortex are independently regulated. Science 1979; 204: 866–868
  • Bryan L. J., Cole J., Donnell S. R., Wanstall J. C. A study designed to explore the hypothesis that beta-1 adrenoceptors are “innervated” receptors and beta-2 adrenoceptors are “hormonal” receptors. J. Pharmacol. Exp. Ther. 1981; 216: 395–400
  • Wolfe B. B., Harden T. K., Sporn J. R., Molinoff P. B. Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J. Pharmacol. Exp. Ther. 1978; 207: 446–457
  • Hancock A. A., Marsh C. L., Unpublished data
  • O'Donnell J. M., Wolfe B. B., Frazer A. Agonist interactions with beta adrenergic receptors in rat brain. J. Pharmacol. Exp. Therap. 1984; 228: 640–647
  • Sellinger-Barnette M. M., Mendels J., Frazer A. The effect of psychoactive drugs on beta-adrenergic receptor binding sites in rat brain. Neuropharmacol. 1980; 19: 447–454
  • Stadel J. M., Naubi P., Shorr R. G.L., Sawyer D. F., Caron M. G., Lefkowitz R. J. Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the β-adrenergic receptor. Proc. Natl. Acad. Sci., U.S.A. 1983; 80: 3173–3177
  • Eldridge J. S., Crowther P. Absolute determination of 125I in clinical applications. Nucleonics 1964; 22: 56–59

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.