10
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Differential Regulation of two Molecular Forms of a μ-Opioid Receptor Type by Sodium Ions, Manganese Ions and by Guanyl-5′-YL Imidodiphosphate

, , , &
Pages 1-25 | Published online: 26 Sep 2008

References

  • Lord J.A.H., Waterfield A.A., Hughes J., Kosterlitz H.W. Endogenous opioid peptides: multiple agonists and receptors. Nature (London) 1977; 267: 495–500
  • Chang K.-J., Cuatrecasas P. Multiple opiate receptors: enkephalins and morphine bind to receptors of different specificity. J. Biol. Chem. 1979; 254: 2610–2618
  • Kosterlitz H.W., Paterson S.J., Robson L.E. Characterisation of the kappa subtype of the opiate receptor in the guinea-pig brain. Brit. J. Pharmacol. 1981; 73: 939–949
  • Chang K.-J., Hazum E., Cuatrecasas P. Novel opiate binding sites selective for benzomorphan drugs. Proc. Natl. Acad. Sci. USA 1981; 78: 4141–4145
  • Bowen W.D., Gentleman S., Herkenham M., Pert C.B. Interconverting μ and δ forms of the opiate receptor in rat striatal patches. Proc. Natl. Acad. Sci. USA 1981; 78: 4818–4822
  • Sharma S.K., Nirenberg M., Klee W.A. Morphine receptors as regulators of adenylate cyclase activity. Proc. Natl. Acad. Sci. USA 1975; 72: 590–594
  • Cooper D.M.F., Londos C., Gill D.L., Rodbell M. Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes. J. Neurochem. 1982; 38: 1164–1167
  • Blume A.J., Lichtshtein D., Boone G. Coupling of opiate receptors to adenylate cyclase: requirement for Na and GTP. Proc. Natl. Acad. Sci. USA 1979; 76: 5626–5630
  • Koski G., Klee W.A. Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. Proc. Natl. Acad. Sci. USA 1981; 78: 4185–4189
  • Koski G., Streaty R.A., Klee W.A. Modulation of sodium-sensitive GTP-ase by partial opiate agonists. An explanation for the dual requirement for Na and GTP in inhibitory regulation of adenylate cyclase. J. Biol. Chem. 1982; 257: 14035–14040
  • Childers S.R., Snyder S.H. Differential regulation by guanine nucleotides of opiate agonist and antagonist receptor interactions. J. Neurochem. 1980; 34: 583–593
  • Zukin R.S., Walczak S., Makman M.H. GTP modulation of opiate receptors in regions of rat brain and possible mechanism of GTP action. Brain Res. 1980; 186: 238–244
  • Pfeiffer A., Sadée W., Herz A. Differential regulation of the μ, δ and κ opiate receptors subtypes by guanine nucleotides and metal ions. J. Neurosci. 1982; 2: 912–917
  • Ross E.M., Gilman A.G. Biochemical properties of hormone sensitive adenylate cyclase. Ann. Rev. Biochem. 1980; 49: 533–564
  • Rodbell M. The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature (London) 1980; 284: 17–22
  • Meunier J.C. μ and κ opiate binding sites in the rabbit CNS. Life Sci. 1982; 31: 1327–1330
  • Meunier J.C., Kouakou Y., Puget A., Moisand C. Multiple opiate binding sites in the central nervous system of the rabbit. Large predominance of a μ subtype in the cerebellum and characterization of a κ subtype in the thalamus. Mol. Pharmacol. 1983; 24: 23–29
  • Simon E.J., Hiller J.M., Edelman I. Solubilization of a stereospecific oopiate-macromolecular complex from the rat brain. Science (Wash.D.C.) 1975; 190: 389–390
  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–270
  • Chance B., Maehly A.C. Assay of catalases and peroxydases. Methods in Enzymology, S.P. Colowick, N.O. Kaplan. Academic Press, New-York 1955; vol II: 764–775
  • Ellman G.L., Courtney K.D., Andres V., Jr., Featherstone R.H. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961; 7: 88–95
  • Racker E. Alcohol dehydrogenase from baker's yeast. Methods in Enzymology, S.P. Colowick, N.O. Kaplan. Academic Press, New-York 1955; vol. I: 500–503
  • Von Voigtlander P.F., Lahti R.A., Ludens J.H. U-50488: a selective and structurally novel non-μ (κ) opioid agonist. J. Pharmacol. Exp. Ther. 1983; 224: 7–12
  • Feinberg A.P., Creese I., Snyder S.H. The opiate receptor: a model explaining structure-activity relationships of opiate agonists and antagonists. Proc. Natl. Acad. Sci. USA 1976; 73: 4215–4219
  • Pert C.B., Pasternak G., Snyder S.H. Opiate agonists and antagonists descriminated by receptor binding in brain. Science (Wash.D.C.) 1973; 182: 1359–1361
  • Simon E.J., Hiller J.M., Groth J., Edelman I. Further properties of stereospecific binding sites in rat brain: on the nature of the sodium effect. J. Pharmacol. Exp. Ther. 1975; 192: 531–537
  • Pasternak G.N., Snowman A.S., Snyder S.H. Selective enhancement of opiate agonist binding by divalent cations. Mol. Pharmacol. 1975; 11: 735–744
  • Kouakou Y.P., Zajac J.M., Moisand C., Meunier J.C. The opiate receptor binding interactions of opioid alkaloids and of an opioid peptide in rat brain membranes: selection by manganese ions and by cholic acid (sodium salt) and minimalization of cross-reaction in vitro. Mol. Pharmacol. 1982; 21: 564–569
  • Northup J.K., Smigel M.D., Sternweiss P.C., Gilman A.G. The subunits of the stimulatory regulatroy component of adenylate cyclase. Resolution of activated 45,000 dalton (α) subunit. J. Biol. Chem. 1983; 258: 11369–11376
  • Codina J., Hildebrandt J., Iyengar R., Birnbaumer L., Sekura R.D., Manclark C.R. Pertussis toxin substrate, the putative N1 component of adenylyl cyclases, is an αβ heterodimer regulated by guanine nucleotide and magnesium. Proc. Natl. Acad. Sci. USA 1983; 80: 4276–4280
  • Limbird L.E., Lefkowitz R.J. Agonist induced increase in apparent β-adrenergic receptor size. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 228–232
  • Limbird L.E., Gill D.M., Stadel J.M., Hickey A.R., Leftkowitz R.J. Loss of β-adrenergic receptor guanine nucleotide regulatory protein interactions accompanies decline in catecholamine responsiveness of adenylate cyclase in maturating rat erythrocytes. J. Biol. Chem. 1982; 255: 1854–1861
  • Smith S.K., Limbird L.E. Solubilization of human platelet α-adrenergic receptors: evidence that agonist occupancy of the receptor stabilizes receptor-effector interactions. Proc. Natl. Acad. Sci. USA 1981; 78: 4026–4030
  • Smith S.K., Limbird L.E. Evidence that human platelet α-adrenergic receptors coupled to inhibition of adenylate cyclase are not associated with the subunit of adenylate cyclase ADP-ribosylated by cholera toxin. J. Biol. Chem. 1982; 257: 10471–10478
  • Kilpatrick B.F., Caron M.G. Agonist binding promotes a guanine nucleotide reversible increase in the apparent size of the bovine anterior pituitary dopamine receptors. J. Biol. Chem. 1983; 258: 13528–13534
  • De Léan A., Ong H., Gutkowska J., Schiller P.W., Mc Nicoll N. Evidence for antagonist induced interaction of angiotensin receptor with a guanine nucleotide binding protein in bovine adrenal zona glomerulosa. Mol. Pharmacol. 1984; 26: 498–508
  • Puget A., Meunier J.C. Récepteur(s) des opiacés du cerveau de grenouille: sépation en phase soluble des complexes macromoléculaires d'un agoniste et d'un antagoniste. C.R. Acad. Sci. 1983; 296-III: 475–478, Paris
  • Ruegg U.T., Cuenod S., Hiller J.M., Gioannini T., Howells R.D., Simon E.J. Characterization and partial purification of solubilized active opiate receptors from toad brain. Proc. Natl. Acad. Sci. USA 1981; 78: 4635–4638
  • Simon J., Szücs M., Benyle S., Borsodi A., Zeman P., Wolleman M. Solubilization and characterization of opioid binding sites from frog (Rana esculenta) brain. J. Neurochem. 1984; 43: 957–963
  • Puget A., Frances B., Jauzac Ph., Meunier J.C. Solubilization of two molecular forms of the frog brain opioid receptor. Neuropeptides. 1984; 5: 129–132
  • Duggan A.W., North R.A. Electrophysiology of oploids. Pharmacological Reviews. 1983; 35: 219–281
  • North R.A., Williams J.T. On the potassium conductance increased by opioids it rat locus coeruleus neurones. J. Physiol. 1985; 364: 265–280
  • Brown D.A., Adams P.R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature (London) 1980; 283: 673–676
  • Pfaffinger P.J., Martin J.M., Hunter D.D., Nathanson N.M., Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature (London) 1985; 317: 536–538
  • Breitwieser G.E., Szabo G. Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature (London) 1985; 317: 538–540
  • Kandel E.R., Schwartz J.H. Molecular biology of learning: modulation of transmitter release. Science (Wash.D.C.) 1982; 218: 433–443
  • Sternweiss P.C., Robishaw J.D. Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol.Chem. 1984; 259: 13806–13813

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.