13
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Regulation of the Nicotinic Acetylcholine Receptor by Protein Phosphorylation

Pages 241-256 | Published online: 26 Sep 2008

References

  • Changeux J.-P. The acetylcholine receptor. An allosteric membrane protein. Harvey Lecture Series 1981; 75: 85–255
  • Changeux J.-P. A. Devillers-Thiery and P. Chemouilli Acetylcholine receptor: an allosteric protein. Science 1984; 225: 1335–1345
  • Reynolds J. A., Karlin A. Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 1978; 17: 2035
  • Huganir R. L., Racker E. Properties of proteoliposomes reconstituted with acetylcholine receptor from Torpedo californica. J. Biol. Chem. 1982; 257: 9372–9378
  • Tank D. W., Huganir R. L., Greengard P., Webb W. W. Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 1983; 80: 5129–5133
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 1982; 299: 793–797
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T., Numa S. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 1983; 302: 528–532
  • Noda M., Takahashi H., Hirose T., Asai M., Takashima H., Inayama S., Miyate T., Numa S. Primary structures of β- and γ- subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 1983; 301: 251–255
  • Claudio T., Ballivert M., Patrick J., Heinemann S. Nucleotide and deduced amino acid sequences of Torpedo californica aceytlcholine receptor γ subunit. Proc. Natl. Acad. Sci. USA 1983; 80: 1111–1115
  • Devillers-Thiery A., Giraudat J., Bentaboulet M., Changeux J. P. Complete mRNA coding sequence of the acetylcholine binding α-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of polypeptide chain. Proc. Natl. Acad. Sci. USA 1983; 80: 2067–2071
  • Finer-Moore J., Stroud R. M. Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. 1984; 81: 155–159
  • Gordon A. S., Davis C. G., Diamond I. Phosphorylation of membrane proteins at a cholinergic synapse. Proc. Natl. Acad. Sci. USA 1977b; 74: 263–267
  • Teichberg V. I., Changeux J.-P. Evidence for protein phosphorylation and dephosphorylation in membrane fragments isolated from the electric organs of Electrophorus electricus. FEBS Lett. 1977a; 74: 76
  • Gordon A. S., Milfay C. G., Davis D., Diamond I. Protein phosphatase activity in acetylcholine receptor-enriched membranes. Biochem. Biophys. Res. Commun. 1979; 87: 876–883
  • Gordon A. S., Davis C. G., Milfay D., Diamond I. Phosphorylation of acetylcholine receptor by endogenous membrane protein kinase in receptor-enriched membranes of Torpedo californica. Nature 1977a; 267: 539–540
  • Teichberg V. I., Sobel A., Changeux J. P. In vitro phosphorylation of the acetylcholine receptor. Nature 1977b; 267: 540–542
  • Saitoh T., Changeux J.-P. Change in the state of phosphorylation of acetylcholine receptor during maturation of the electromotor synapse in Torpedo marmorata electric organ. Proc. Natl. Acad. Sci. USA 1981; 78: 4430–4434
  • Smilowitz H., Hadjian R. A., Dwyer J., Feinstein M. B. Regulation of acetylcholine receptor phosphorylation by calcium and calmodulin. Proc. Natl. Acad. Sci. USA 1981; 78: 4708–4712
  • Davis C. G., Gordon A. S., Diamond I. Specificity and localization of the acetylcholine receptor kinase. Proc. Natl. Acad. Sci. USA 1982; 79: 3666–3670
  • Huganir R. L., Greengard P. cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 1983; 80: 1130–1134
  • Huganir R. L, Albert K. A., Greengard P. Phosphorylation of the nicotinic acetylcholine receptor by Ca2+/phospholipid-dependent protein kinase, and comparison with its phosphorylation by cAMP-dependent protein kinase. Soc. Neurosci. Abstr. 1983; 9: 578
  • Huganir R. L., Miles K., Greengard P. Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase. Proc. Natl. Acad. Sci. USA 1984; 81: 6963–6972
  • Kemp B. E., Graves D. J., Benjamin E., Krebs E. G. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J. Biol. Chem. 1977; 252: 4888–4894
  • Nishizuka Y. Three multifunctional protein kinase systems in transmembrane control. Molecular Biology Biochemistry and Biophysics, Vol. 32, Chemical Recognition in Biology, F. Chapeville, A.-L. Haenni. Springer-Verlag, Berlin, Heidelberg 1980
  • Hunter T., Ling N., Cooper J. A. Protein kinase C phosphorylation of the EGF receptor at a threonine residue close to the cytoplasmic face of the plasma membrane. Nature 1984; 311: 450–483
  • Patschinsky T., Hunter F. S., Esch J. A., Cooper T., Sefton B. M. Analysis of the sequence of amino acids surrounding sites of tyrosine phosphorylation. Proc. Natl. Acad. Sci. USA 1982; 79: 973–977
  • Hunter T. Synthetic peptide substrates for a tyrosine protein kinase. J. Biol. Chem. 1982; 257: 4843–4848
  • Pike L. J., Gallis J. E., Casnellie B., Bornstein P., Krebs E. G. Proc. Natl. Acad. Sci. USA 1982; 79: 1443–1447
  • Noda M, Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Hirose T., Inayama S., Numa S. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle actylcholine receptor. Nature 1983; 305: 818–823
  • Nef Mauron P. A., Stalder R., Alliod C., Ballivet M. Structure, linkage, and sequence of the two genes encoding the δ and γ subunits of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 1984; 81: 7975–7979
  • Lapolla R. J., Mayne K. M., Davidson N. Isolation and characterization of cDNA clone for the complete protein coding region of the δ subunit of the mouse acetylcholine receptor. Proc. Natl. Acad. Sci. USA 1984; 81: 7970–7974
  • Huganir R. L., Delcour A. H., Greengard P., Hess G. P. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 1986; 321: 774–776
  • Middleton P., Jaramillo F., Schuetze S. M. Forskolin increases the rate of acetylcholine receptor desensitization at rat soleus endplates. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 4967–4971
  • Anthony D. T., Rubin L. L., Miles K., Huganir R. L. Forskolin regulates phosphorylation of the nicotinic acetylcholine receptor in rat primary muscle cell cultures. Abstracts of the 16th Annual Meeting of the Society for Neuroscience. 1986, 148
  • Middleton P., Rubin L. L., Schuetze S. M. Forskolin increases the rate of acetylcholine receptor desensitization on rat myotubes in vitro. Abstracts of the 16th Annual Meeting of the Society for Neuroscience. 1986, 148
  • Eusebi F., Molinaro M., Zani B. M. Agents that activate protein kinase C reduce acetylcholine sensitivity in cultured myotubes. J. Cell Biol. 1985; 100: 1339–1342

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.