4
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Modulation of B-50 Phosphorylation and Polyphosphoinositide Metabolism in Synaptic Plasma Membranes by Protein Kinase C, Phorbol Diesters and Acth

, , , &
Pages 345-361 | Published online: 26 Sep 2008

References

  • Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984; 308: 693–698
  • Kikkawa U., Nishizuka Y. The role of protein kinase C in transmembrane signalling. Ann.Rev.Cell Biol. 1986; 2: 149–178
  • Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986; 233: 305–312
  • Kaczmarek L. K. The role of protein kinase C in regulation of ion channels and neurotransmitter release. TINS 1986; 10: 30–34
  • Zurgil N., Yarom M., Zisapel N. Concerted enhancement of calcium influx, neurotransmitter release and protein phosphorylation by a phorbol ester in cultured brain neurons. Neuroscience 1986; 19: 1255–1264
  • Shapira R., Silberberg S. D., Ginsburg S., Rahamimoff R. Activation of protein kinase C augments evoked transmitter release. Nature 1987; 325: 58–62
  • Malenka R. C., Madison D. V., Nicoll R. A. Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 1986; 321: 175–177
  • Malenka R. C., Madison D. V., Andrade R., Nicoll R. A. Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J. Neurosci. 1986; 6: 475–480
  • Bollag G. E., Roth R. A., Beaudoin J., Mochly-Rosen D., Koshland D. E., Jr. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc.Natl.Acad.Sci. USA 1986; 83: 5822–5824
  • DeRiemer S. A., Strong J. A., Albert K. A., Greengard P., Kaczmarek L. K. Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature 1985; 313: 313–316
  • Kaczmarek L. K., Strong J. A., Kauer A. The role of protein kinases in the control of prolonged changes in neuronal excitability. Progr. Brain Res. 1986; 69: 77–90
  • Neary J. T. Modulation of ion channels by Ca2+-activated protein phosphorylation: a biochemical mechanism for associative learning. Progr. Brain Res. 1986; 69: 91–106
  • Zwiers H., Schotman P., Gispen W. H. Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membrane. J. Neurochem. 1980; 34: 1689–1699
  • Aloyo V. J., Zwiers H., Gispen W. H. B-50 protein kinase and kinase C in rat brain. Progr.Brain Res. 1982; 56: 303–315
  • Aloyo V. J., Zwiers H., Gispen W. H. Phosphorylation of B-50 protein by calcium-activated phospholipid-dependent protein kinase and B-50 protein kinase. J.Neurochem. 1983; 41: 649–653
  • Eichberg J., De Graan P. N.E., Schrama L. H., Gispen W. H. Dioctanoylglycerol and phorbol diesters enhance phosphorylation of phosphoprotein B-50 in native synaptic plasma membranes. Biochem. Biophys. Res. Commun. 1986; 136: 1007–1012
  • De Graan P. N.E., Oestreicher A. B., Schrama L. H., Gispen W. H. Phosphoprotein B-50: localization and function. Progr. Brain Res. 1986; 69: 37–50
  • Skene J. H.P., Willard M. Changes in axonally transported proteins during regeneration in toad retinal ganglion cells. J. Cell. Biol. 1981; 89: 96–103
  • Jacobson R. D., Virag I., Skene J. H.P. A protein associated with axon growth, GAP43, is widely distributed and developmentally regulated in rat CNS. J. Neurosci. 1986; 6: 1843–1855
  • Zwiers H., Oestreicher A. B., Bisby M. A., De Graan P. N.E., Gispen W. H. Axonal Transport, M. A. Bisby, Smith, 1987, in press
  • Benowitz L. I., Lewis E. R. Increased transport of 44,000 to 49,000 dalton acidic proteins during regeneration of the goldfish optic nerve: a two-dimensional gel analysis. J. Neurosci. 1983; 3: 2153–2163
  • Perrone-Bizzozero N. I., Finklestein S. P., Benowitz L. Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro. J. Neurosci. 1986; 6: 3721–3730
  • Meiri K. F., Pfenninger K. H., Willard M. B. Growth-associated protein, GAP43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc. Natl. Acad. Sci. USA 1986; 83: 3537–3541
  • Katz F., Ellis L., Pfenninger K. H. Nerve growth cones isolated from fetal rat brain. III. Calcium-dependent protein phosphorylation. J. Neurosci. 1985; 5: 1402–1411
  • Gispen W. H., De Graan P. N.E., Chan S. Y., Routtenberg A. Comparison between the neural acidic proteins B-50 and F1. Progr. Brain Res., 69: 383–386
  • Oestreicher A. B., Van Dongen C. J., Zwiers H., Gispen W. H. Affinity-purified anti-B-50 protein antibody: interference with the function of the phosphoprotein B-50 in synaptic plasma membranes. J. Neurochem. 1983; 41: 331–340
  • Jolles J., Zwiers H., Dekker A., Wirtz K. W.A., Gispen W. H. Corticotropin-(1–24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Biochem. J. 1981; 194: 283–291
  • Kristjansson G. I., Zwiers H., Oestreicher A. B., Gispen W. H. Evidence that the synaptic phosphoprotein B-50 is localized exclusively in nerve tissue. J. Neurochem. 1982; 39: 371–378
  • Kikkawa U., Go M., Koumoto J., Nishizuka Y. Rapid purification of protein kinase C by HPLC. Biochem. Biophys. Res. Commun. 1986; 135: 636–643
  • Zwiers H., Veldhuis D., Schotman P., Gispen W. H. ACTH, cyclic nucleotides and brain protein phosphorylation in vitro. Neurochem. Res. 1976; 1: 669–677
  • Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Burgess S. K., Sahyoun N., Blanchard S. G., Levine H., III, Chang K., Cuatrecasas P. Phorbol ester receptors and PKC in primary neuronal cultures: development and stimulation of endogenous phosphorylation. J. Cell. Biol. 1986; 102: 312–319
  • De Graan P. N.E., manuscript in preparation
  • Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa V., Nishizuka Y. Direct activation of Ca2+-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 1982; 257: 7847
  • Akers R. F., Routtenberg A. Protein kinase C phosphorylates a 47 Mr protein (F1) directly related to synaptic plasticity. Brain Res. 1985; 334: 147–151
  • Wolf M., Levine H., III, May W. S., Jr., Cuatrecasas P., Sahyoun N. A model for intracellular translocation of protein kinase C inovlving synergism between Ca2+ and phorbol esters. Nature 1985; 317: 546–549
  • Kraft A. S., Anderson W. B. Phorbol esters increase the amount of calcium, phospholipid-dependent protein kinase associated with plasma membrane. Nature 1983; 301: 621–623
  • Routtenberg A. Synaptic plasticity and protein kinase C. Progr. Brain Res. 1986; 69: 211–234
  • Jolles J., Zwiers H., Van Dongen C. J., Schotman P., Wirtz K. W.A., Gispen W. H. Modulation of brain polyphosphoinositide metabolism by ACTH-sensitive protein phosphroyation. Nature 1980; 286: 623–625
  • Jork R., De Graan P. N.E., Van Dongen C. J., Zwiers H., Matthies H., Gispen W. H. Dopamine-induced changes in protein phosphorylation and polyphosphoinositide metabolism in rat hippocampus. Brain Res. 1984; 291: 73–81
  • Van Dongen C. J., Zwiers H., De Graan P. N.E., Gispen W. H. Modulation of the activity of purified phosphatidylinositol 4-phosphate kinase by phosphorylated and dephosphorylated B-50 protein. Biochem.Biophys.Res.Commun. 1985; 8: 1219–1229
  • Schrama L. H., De Graan P. N.E., Eichberg J., Gispen W. H. Feedback control of the inositol phospholipid response in rat brain is sensitive to ACTH. Eur.J.Pharm. 1986; 121: 403–404
  • Gispen W. H., Leunissen J. L.M., Oestreicher A. B., Verkleij A. J., Zwiers H. Presynaptic localization of B-50 phosphoprotein: the ACTH-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism. Brain Res. 1985; 328: 381–385

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.