3
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Differential Modulation by Cations of Sigma and Phencyclidine Binding Sites in Rat Brain

, , &
Pages 11-27 | Published online: 26 Sep 2008

References

  • Martin W. R., Eades C. G., Thompson R. E., Huppler R. E., Gilbert P. E. The effects of morphine-and nalorphine-like drugs in the non-dependent and morphine dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 1976; 197: 517–532
  • Keats A. S., Telford J. Narcotic antagonists as analgesics: Clinical aspects. Molecular Modifications in Drug Design, R. F. Gould. Adv. Chem. Ser. 45, Am. Chem. Soc., Washington, DC 1964; 170–174
  • Domino E. F. Neurobiology of phencyclidine (Serenyl), a drug with an unusual spectrum of pharmacological activity. Int. Rev. Neurobiol. 1964; 6: 303
  • Vincent J. P., Kartalovski B., Geneste P., Kamenka J. M., Lazdunski M. Interaction of phencyclidine (“angeldust”) with a specific receptor in rat brain. Proc. Natl. Acad. Sci. USA 1979; 76: 4678–4682
  • Zukin S. R., Zukin R. S. Specific [3H]phencyclidine binding in rat central nervous system. Proc. Natl. Acad. Sci. USA 1979; 76: 5372–5376
  • Su T. P. Evidence for sigma opioid receptor: binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea pig brain. J. Pharmacol. Exp. Ther. 1982; 223: 284–290
  • Tam S. W. Naloxone-inaccessible sigma receptor in rat central nervous system. Proc. Natl. Acad. Sci. USA 1983; 80: 6703–6707
  • Murray T. F., Leid M. E. Interaction of dextrorotatory opioids with phencyclidine recognition sites in rat brain membranes. Life Sci. 1984; 34: 1899–1911
  • Brady K. T., Balster R. L., May E. L. Stereoisomers of N-Allylnormetazocine: Phencyclidine-like behavioral effects in squirrel monkeys and rats. Science 1982; 215: 178–180
  • Holtzmann S. G. Phencyclidine-like discrimination effects of opioids in the rat. J. Pharmacol Exp. Ther. 1980; 214: 614–619
  • Shannon H. E. Evaluation of phencyclidine analogs on the basis of their discriminative stimulus properties in the rat. J. Pharmacol. Exp. Ther. 1981; 216: 543–551
  • Shearman G. T., Herz A. Non-opioid psychotomimetic-like discriminative stimulus properties of N-allylnormetazocine (SKF 10,047) in the rat. Eur. J. Pharmacol. 1982; 82: 167–172
  • Zukin R. S., Zukin S. R. Multiple opiate receptors: Emerging concepts. Life Sci. 1981; 29: 2681–2690
  • Tam S. W., Cook L. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H]SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes. Proc. Natl. Acad. Sci. USA 1984; 81: 5618–5621
  • Largent B. L., Gundlach A. L., Snyder S. H. Psychotomimetic opiate receptors labeled and visualized with (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. Proc. Natl. Acad. Sci. USA 1984; 81: 4983–4987
  • Weber E., Sonders M., Quarum M., McLean S., Pou S., Keana J. F.W. 1,3-Di(2-[5-3H]tolyl)guanidine: a selective ligand that labels sigma-type receptors for psychotomimetic and antipsychotic drugs. Proc. Natl. Acad. Sci. USA 1986; 83: 8784–8788
  • Ferris R. M., Tanf F. L. M., Chang K. J., Russel A. Evidence that the potential antipsychotic agent rimcazole (BW 234U) is a specific, competitive antagonist of sigma sites in brain. Life Sci. 1986; 38: 2329–2337
  • Vignon J., Chicheportiche R., Chicheportiche M., Kamenka J. M., Geneste P., Lazdunski M. [3H]TCP: a new tool with high affinity for the PCP receptor in rat brain. Brain Research 1983; 280: 194–197
  • Costa T., Russel L., Pert C. B., Rodbard D. Halide- and gamma-aminobutyric acid-induced enhancement of diazepam receptors in rat brain. Mol. Pharmacol. 1981; 20: 470–476
  • Schwarz S., Katki A. G., Zhou G. Z., Rovati E., Munson P. J., Rodbard D. μ1, and δ opioid receptors are differentially modulated by cations and GTP analogs. Modelling with quantitative LIGAND analysis. Progress in Opioid Research, Advances in the Biosciences. Pergamon Press Ltd., London 1989; vol. 75: 141–144
  • Schwarz S., Pohl P., Zhou G. Z. Steroid binding at receptors. Science (Washington, D.C.) 1989; 246: 11635–1637
  • Schwarz S., Katki A. G. Effects of calcium-channel blockers (CCB) on μml and δ opioid receptors in rat brain membranes, Progress in Clinical and Biological Research. Alan R. Liss, Inc., New York 1990; vol. 328: 109–112
  • Itzhak Y., Hiller J. M., Simon E. J. Characterization of specific binding sites for [3H](d)-N-allylnormetazocine in rat brain membranes. Mol. Pharmacol. 1985; 27: 46–52
  • Vignon J., Vincent J. P., Bidard J. N., Kamenka J. M., Geneste P., Monier S., Lazdunski M. Biochemical properties of the phencyclidine receptor. Eur. J. Pharmacol. 1982; 81: 531–542
  • Zhou G. Z., Katki A. G., Schwarz S., Munson P. J., Rodbard D. Demonstration of subtypes of “sigma” and phencyclidine receptors in rat brain membranes using quantitative LIGAND analysis. International Narcotics Research Conference, AlbiFrance, July, 3–81988, Abstract P28
  • Baudry M., Lynch G. Regulation of glutamate receptors by cations. Nature (London) 1979; 282: 748–750
  • Blume A. J., Lichtshtein D., Boone G. Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. Proc. Natl. Acad. Sci. USA 1979; 76: 5626–5630
  • De Vries D. J., Beart P. M. Magnesium ions reveal nanomolar potency of dopamine at [3H] spiperone labelled D-2 receptors in rat corpus striatum. Eur. J. Pharmacol. 1985; 109: 417–419
  • Grigoriadis D., Seeman P. Complete conversion of brain D2 dopamine receptors from the high-to low- affinity state for dopamine agonists, using sodium ions and guanine nucleotide. J. Neurochem. 1985; 44: 1925–1935
  • Lyengar R., Birnbaumer L. Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides. Proc. Natl. Acad. Sci. USA 1982; 79: 5179–5183
  • Lo M. M. S., Snyder S. H. Two distinct solubilized benzodiazepine receptors: differential modulation by ions. J. Neurosci. 1983; 3: 2270–2279
  • Minuth M., Jakobs K. H. Sodium regulation of agonist and antagonist binding to β-adrenoceoptors in intact and Ns-deficient membranes. Naunyn-Schmiedeberg's Arch. Pharmacol. 1986; 333: 124–129
  • Paterson S. J., Robson L. E., Kosterlitz H. W. Control by cations of opioid binding in guinea pig brain membranes. Proc. Natl. Acad. Sci. USA 1986; 83: 6216–6220
  • Pert C., Snyder S. H. Properties of opiate-receptor binding in rat brain. Proc. Natl. Acad. Sci. USA 1973; 70: 2243–2247
  • Puttfarcken P., Werling L. L., Brown S. R., Cote T. E., Cox B. M. Sodium regulation of agonist binding at opioid receptors. I. Effects of sodium replacement on binding at μml and δ-type receptors in 7315c and NG108–15 cells and cell membranes. Mol. Pharmacol. 1986; 30: 81–89
  • Usdin T. B., Creese I., Snyder S. H. Regulation by cations of [3H]spiroperidol binding associated with dopamine receptors of rat brain. J. Neurochem. 1980; 34: 669–676
  • Itzhak Y., Khouri M. Regulation of the binding of - and phencyclidine (PCP)-receptor ligands in rat brain membranes by guanine nucleotides and ions. Neurosci. Lett. 1988; 85: 147–152
  • Haring R., Kloog Y., Harshak-Felixbrodt N., Sokolovsky M. Multiple mode of binding of phencyclidines: High affinity association between phencyclidine receptors in rat brain and a monovalent ion-sensitive polypeptide. Biochem. Biophys. Res.Comm. 1987; 142: 501–510
  • Haring R., Kloog Y., Kalir A., Sokolovsky M. Binding studies and photoaffinity labeling identify two classes of phencyclidine receptors in rat brain. Biochemistry 1987; 26: 5854–5861
  • Wolverton W. L., Schuster C. R. Behavioral and pharmacological aspects of opioid dependence: Mixd agonists-antagonists. Pharmacol. Rev. 1983; 35: 33–52
  • Quirion R., Chicheportiche R., Contreras P. C., Johnson K. M., Lodge D., Tam S. W., Woods J. H., Zukin S. R. Classification and nomenclature of phencyclidine and sigma receptor sites. Trends Neurosci. 1987; 10: 444–446
  • Loo P. A., Braunwalder A. F., Lehmann J., Williams M. Radioligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists. Eur. J. Pharmacol. 1986; 123: 467–468
  • Johnson K. M., Sacaan A. I., Snell L. D. Equilibrium analysis of [3H]TCP binding: Effects of glycine, magnesium and N-methyl-D-aspartate agonist. Eur. J. Pharmacol. 1988; 152: 141–146
  • Wong E. F., Kemp J. A., Priestley T., Knight A. R., Woodruff G. N., Lversen L. L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA 1986; 83: 7104–7108
  • Church J., Davies S. N., Lodge D. Pentazocine, unlike haloperidol or 3-(3-hydroxyphenyl)-N-n-propylpiperidine (3-PPP), is an N-methylaspartate (NMA) antagonist. Neurosci. Lett. 1986, Suppl. 24: S37
  • Reynolds I. J., Murphy S. N., Miller R. J. [3H]Labeled MK-801 binding to excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc. Natl. Acad. Sci. USA. 1987; 84: 7744–7748
  • Ransom R. W., Stec N. L. Cooperative modulation of [3H]MK-801 binding to the N-methyl-D-aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J. Neurochem. 1988; 51: 830–836
  • Kemp J. A., Foster A. C., Wong E. H. F. Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci. 1987; 10: 294–299
  • Snell L. D., Johnson K. M. Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs. J. Pharmacol. Exp. Ther. 1986; 238: 938–946
  • Anis N. A., Berry S. C., Burton N. R., Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurons by N-methyl-D-aspartate. Br. J. Pharmacol. 1983; 79: 565–575
  • Ascher P. Electrophysiological studies of NMDA receptors. Trends Neurosci. 1987; 10: 284–288
  • Huettner J. E., Bean B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: Selective binding to open channels. Proc. Natl. Acad. Sci. USA 1988; 85: 1307–1311
  • Cotman C. W., Monaghan D. T., Ottersen O. P., Storm-Mathisen J. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 1987; 10: 273–280
  • Mayer M. L., Westbrook G. L., Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature (London) 1984; 309: 262–263
  • Johnson K. M., Snell L. D., Morter R. S. N-Methyl-D-aspartate enhanced [3H]TCP binding to rat cortical membranes: effects of divalent cations and glycine. Sigma Opioid and Phencyclidine-like Compounds as Molecular Probes in Biology, E. F. Domino, J. M. Kamenka. NPP Press, Ann Arbor 1984; 259
  • Reynolds I. J., Miller R. J. [3H]MK801 binding to the NMDA receptor/ionophore complex is regulated by divalent cations: Evidence for multiple regulatory sites. Eur. J. Pharmacol. 1988; 151: 103–112
  • Westbrook G. L., Mayer M. L. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature (London) 1987; 328: 640–643
  • Mayer M. L., Westbrook G. L. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse central neurones. J. Physiol. (London) 1987; 394: 501–527
  • Musacchio J. M., Klein M., Santiago L. J. High affinity dextromethorphan binding sites in guinea pig brain: further characterization and allosteric interactions. J. Pharmacol. Exp. Ther. 1988; 247: 424–431
  • Su T. P., London E. D., Jaffe J. H. Steroid binding at sigma receptors suggest a link between endocrine, nervous, and immune systems. Science 1988; 240: 219–221
  • McLean S., Weber E. Autoradiographic visualization of haloperidol-sensitive sigma receptors in guinea-pig brain. Neuroscience 1988; 25: 259–269
  • McCann D. J., Rabin R. A., Rens-Domiano S., Winte J. C. Phencyclidine/SKF-10,047 binding sites: evaluation of function. Pharmacol. Biochem. Behav. 1989; 32: 87–94
  • Walker J. M., Matsumoto R. R., Bowen W. D., Gans D. L., Jones K. D., Walker F. O. Evidence for a role of haloperidol-sensitive sigma-‘opiate’ receptors in the motor effects of antipsychotic drugs. Neurology 1988; 38: 961–965
  • Sonders M. S., Keana J. F. W., Weber E. Phencyclidine and psychotomimetic sigma opiates: recent insights into their biochemical and physiological sites of action. Trends Neurosci. 1988; 11: 37–40
  • Manallack D. T., Beart P. M., Gundlach A. L. Psychotomimetic sigma-opiates and PCP. Trends Pharmacol. Sci. 1986; 7: 445–451
  • Schwarz S., Zhou G. Z., Katki A. G., Rodbard D. L-Homocysteate stimulates [3H]MK-801 binding to the phencyclidine recognition site and is thus an agonist for the N-methyl-D-aspartate-operated cation channel. Neuroscience 1989, in press
  • Bowen W. D., Kirschner B. N., Newman A. H., Rice K. C. Sigma receptors negatively modulate agonist-stimulated phosphoinositide metabolism in brain. Eur. J. Pharmacol. 1988; 149: 399–400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.