241
Views
137
CrossRef citations to date
0
Altmetric
Research Article

5-HT Receptors: Subtypes and Second Messengers

&
Pages 197-214 | Published online: 26 Sep 2008

References

  • Ananth U. S., Leli U., Hauser G. Stimulation of phosphoinositide hydrolysis by serotonin in C6 glioma cells. J. Neurochem 1987; 48: 253–261
  • Andrade R., Malenka R. C., Nicoll R. A. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 1986; 234: 1261–1265
  • Barnes N. M., Costall B., Naylor R. J. [3H] Zacopride: Ligand for the identification of 5-HT3 recognition sites. J. Pharm. Pharmacol. 1938; 40: 548–551
  • Barnes J. M., Barnes N. M., Costall B., Naylor R. J., Tyers M. B. 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature 1989; 338: 762–763
  • Beck S. G., Clarke W. P., Goldfarb J. Spiperone differentiates multiple 5-hydroxytryptamine respoases in rat hippocampal slices in vitro. Eur. J. Pharmacol. 1985; 116: 195–197
  • Blandina P., Goldfarb J., Green J. P. Activation of 5-HT3 receptor releases dopamine from ratstriatal slice. Eur. J Pharmacol. 1988; 155: 349–350
  • Bockaert J., Dumuis A., Bouhelal R., Sebben M., Cory R. N. Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedeberg's Arch. Pharmacol. 1987; 335: 588–592
  • Bockaert J., Nelson D. L., Herbet A., Adrien J., Enjalbert A., Hamon M. Serotonin receptors coupled with an adenylate cyclase in the rat brain: non identity with [3H]-5-HT binding sites. Advances in Experimental Medicine and Biology, Haber, Gabay, Issidorides, Alivisatos, 1981; 133: 327–345
  • Bouhelal R., Smounya L., Bockaert J. 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Eur. J. Pharmacol. 1988; 151: 189–196
  • Bradley P. B., Engel G., Fenuik W., Fozard J. R., Humphrey P. P. A., Middlemiss D. N., Mylecharane E. J., Richardson B. P., Saxena P. R. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol. 1986; 25: 563–576
  • Brittain R. T., Butler A., Coates I. H., Fortune D. H., Hagan R., Hill J. M., Humber D. C., Humphrey P. P. A., Ireland S. J., Jack D., Jordan C. C., Oxford A., Straughan D. W., Tyers M. B. GR38032F, A novel selective 5HT3 receptor antagonist. Br. J. Pharmacol. 1987; 90: 87P
  • Brown E., Kendall D. A., Nahorski S. R. Inositol phospholipid hydrolysis in rat cerebral cortex slices. I. Receptor characterization. J. Neurochem. 1984; 42: 1379–1387
  • Bruns C., Marmé D. Pertussis toxin inhibits the angiotensin II and serotonin-induced rise of free cytoplasmic calcium in cultured smooth muscle cells from rat aorta. FEBS Lett. 1987; 212: 40–44
  • Clarke D. E., Craig D. A., Fozard J. R. The 5-HT4 receptor: naughty but nice. TiPS. 1989; 10: 385–386
  • Clarke W. P., De Vivo M., Beck S. G., Maayani S., Goldfarb J. Serotonin decreases population spike amplitude in hippocampal cells through a pertussis toxin substrate. Brain Res. 1987; 410: 357–361
  • Claustre Y., Bénavidès J., Scatton B. 5-HT1A receptor agonists inhibit carbachol-induced stimulation of phosphoniositide tumover in the rat hippocampus. Eur. J. Pharmacol 1988; 149: 149–153
  • Conn P. J., Sanders-Bush E. Selective 5 HT antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacol. 1984; 8: 993–996
  • Conn P. J., Sanders-Bush E. Serotonin stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J. Pharmacol. Exp. Ther. 1985; 234: 195–203
  • Conn P. J., Sanders-Bush E. Agonist-induced phosphoinositide hydrolysis in choroid plexus. J. Neurochem. 1986b; 47: 1754–1760
  • Conn P. J., Sanders-Bush E., Hoffman B. J., Hartig P. R. A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc. Natl. Acad. Sci. USA 1986; 83: 4086–4088
  • Cory R. N., Berta P., Haiech J., Bockaert J. 5-HT2 receptor-stimulated inositol phosphate formation in rat aortic myocytes. Eur. J. Pharmacol. 1986; 131: 153–157
  • Costall B., Domeney A. M., Kelly M. E., Naylor R. J., Tyers M. B. The antipsychotic potential of GR38032F, A selective antagonist of 5HT3 receptors in the central nervous system. Br. J. Pharmacol. 1987; 90: 89P
  • Craig D. A., Clarke D. E. 5-hydroxytryptamine and cholinergic mechanisms in guinea-pig ileum. Br. J. Pharmacol. 1989; 96: 247P
  • De Chaffoy de Courcelles D., Leysen J. E., De Clerck F., Van Belle H., Janssen P. A.J. Phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. Biol J. Chem. 1985; 260: 7603–7608
  • Derkach V., Surprenant A. M., North R. A. 5-HT3 receptors are membrane ion channels. Nature (London) 1989; 339: 706–709
  • De Vivo M., Maayani S. Inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT receptor agonists. Eur. J. Pharmacol. 1989; 119: 231–234
  • De Vivo M., Maayani S. Characterization of 5-hydroxytryptamine1A-receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea-pig and rat hippocampal membranes. J. Pharmacol. Exp. Ther. 1986; 238: 248–253
  • Doyle V. M., Creba J. A., Rüegg U. T., Hoyer D. Serotonin increases the production of inositol phosphates and mobilises calcium via the 5-HT2 receptor in A7r5 smooth muscle cells. Naunyn-Schmiedeberg's Arch. Pharmacol. 1986; 333: 98–103
  • Dumuis A., Bouhelal R., Sebben M., Bockaert J. A 5-HT receptor in the central nervous system, positively coupled with adenylate cyclase, is antagonized by ICS 205 930. Eur. J. Pharmacol. 1988; 146: 187–188
  • Dumuis A., Bouhelal R., Sebben M., Cory R., Bockaert J. A non-classical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol. Pharmacol. 1988; 34: 880–887
  • Engel G., Göthert M., Hoyer D., Schlicker E., Hillenbrand K. Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg's Arch. Pharmacol. 1986; 332: 1–7
  • Engel G., Hoyer D., Kalkman H. O., Wick M. B. Identification of 5-HT2 receptors on longitudinal muscle of the guinea-pig ileum. J. Rec. Res. 1984; 4: 113–126
  • Fargin A., Raymond J. R., Lohse M. J., Kobilka B. K., Caron M. G., Lefkowitz R. J. The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 1988; 335: 358–360
  • Fargin A., Raymond J. R., Regan J. W., Cotecchia S., Lefkowitz R. J., Caron M. G. Effector coupling mechanisms of the cloned 5-HT1A receptor. J. Biol. Chem. 1989; 264: 14848–52
  • Fozard J. R. Differences between receptors for 5-hydroxytryptamine on autonomic neurones revealed by nor-(-)-cocaine. J. Auton. Pharmac. 1983; 3: 21–26
  • Fozard J. R. MDL 72222, a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 1984; 326: 36–44
  • Fozard J. R. 5-HT: The Enigma Variations. TIPS. 1987; 8: 501–506
  • Fozard J. R. The peripheral effects of 5-Hydroxytryptamine. Oxford University Press, Oxford 1989
  • Gaddum J. H., Picarelli Z. P. Two kinds of tryptamine receptor. J. Pharmacol. Chemother. 1957; 12: 323–328
  • Gozlan H., El Mestikawy S., Pichat L., Glowinski J., Hamon M. Identification of presynaptic serotonin autoreceptors by a new ligand: 3H-PAT. Nature (London) 1983; 305: 140–142
  • Gozlan H., Schechter L. E., Bolanos F., Emerit M. B., Miquel M. C., Nielsen M., Hamon M. Determination of the molecular size of the 5-HT3 receptor binding site by radiation inactivation. Eur. J. Pharmacol. 1989; 172: 497–500
  • Hartig P. Molecular biology of 5-HT receptors TIPS 1989; 10: 64–69
  • Heuring R. E., Peroutka S. J. Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J. Neurosci. 1987; 7: 894–903
  • Hoyer D. Molecular pharmacology and biology of 5-HT1C receptors. TIPS 1988; 9: 89–94
  • Hoyer D. Functional correlates of serotonin 5-HT1 recognition sites. J. Rec. Res. 1988; 8: 59–81
  • Hoyer D. Biochemical mechanisms of 5-HT receptor-effector coupling in peripheral tissues. The peripheral actions of 5-hydroxytryptamine, J. R. Fozard. Oxford University Press. 1989; 72–99
  • Hoyer D. 5-HT3 5-HT4 and 5-HT-M receptors. Neuropsychopharmacology. 1990, in press
  • Hoyer D., Engel G., Kalkman H. O. Characterization of the 5-HT1B recognition site in rat brain: binding studies with [125I]iodocyanopindolol. Eur. J. Pharmacol. 1985; 118: 1–12
  • Hoyer D., Engel G., Kalkman H. O. Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur. J. Pharmacol. 1985; 118: 13–23
  • Hoyer D., Middlemiss D. N. The pharmacology of the terminal 5-HT autoreceptors in mammalian brain: evidence for species differences. Trends Pharmacol. Sci. 1989; 10: 130–132
  • Hoyer D., Neijt H. C. Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG 108–15 neuroblastoma-glioma cells. Eur. J. Pharmacol. 1987; 143: 191–192
  • Hoyer D., Neijt H. C. Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol. Pharmacol. 1988; 33: 303–309
  • Hoyer D., Pazos A., Probst A., Palacios J. M. Serotonin receptors in the human brain, I: Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res. 1986; 376: 85–96
  • Hoyer D., Schoeffter P. 5-HT1D receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra. Eur. J. Pharmacol. 1988; 147: 145–147
  • Hoyer D., Schoeffter P., Waeber C., Palacios J. M., Dravid A. 5-HT1C receptor-mediated stimulation of inositol phosphate production in pig choroid plexus; a pharmacological characterization. Naunyn Schmiedeberg's Arch. Pharmacol. 1989; 339: 252–258
  • Julius D., MacDermott A. B., Axel R., Jessell T. M. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 1988; 241: 558–564
  • Kennett G. A., Curzon G. Evidence that hypophagia induced by mCPP and TFMPP requires 5-HT1C and 5-HT1B receptors; hypophagia induced by RU 24969 only requires 5-HT1B receptors. Psychopharmacol. 1988; 96: 93–100
  • Kennett G. A., Curzon G. Evidence that mCPP may have behiavioural effects mediated by central 5-HT1C receptors. Br. J. Pharmacol. 1988; 94: 137–147
  • Kilpatrick G. J., Jones B. J., Tyers M. B. The identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 1987; 330: 746–748
  • Leysen J. E., Niemegeers C. J. E., Van Nueten J. M., Laduron P. M. [3H]ketanserin (R41 468), a selective 3H ligand for serotonin 2 receptor binding sites. Mol. Pharmacol. 1982; 21: 301–314
  • Markstein R., Hoyer D., Engel G. 5HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeberg's Arch. Pharmacol. 1986; 333: 335–341
  • Molderings G. J., Fink K., Schlicker E., Göthert M. Inhibition of noradrenaline release in the rat vena cava via presynaptic 5-HT1B receptors. Naunyn Schmiedeberg's Arch. Pharmacol. 1987; 336: 245–250
  • Murphy T. J., Bylund D. B. Oxymetazoline inhibits adenylate cyclase by activation of serotonin-1 receptors in the OK cell, an established renal epithelial cell line. Mol. Pharmacol. 1988; 34: 1–7
  • Nakaki T., Roth B. L., Chuang D., Costa E. Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: participation of Ca++ channels and phospholipase C. J. Pharmacol. Exp. Ther. 1985; 234: 442–446
  • Neijt H. C., te Duits I. J., Vijverberg H. P.M. Pharmacological characterization of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacol. 1988; 27: 301–307
  • Osborne N. N., Hamon M. Neuronal Serotonin. John Wiley and Sons. 1988; 555
  • Pazos A., Hoyer D., Palacios J. M. The binding of serotonergic ligand to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur. J. Pharmacol. 1984; 106: 539–546
  • Pazos A., Palacios J. M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 1988; 346: 205–230
  • Peroutka S. J. 5-Hydroxytryptamine receptor subtypes. Ann. Rev. Neurosci. 1988; 11: 45–60
  • Peroutka S. J., Hamik A. [3H]Quipazine labels 5-HT3 recognition sites in rat cortical membranes. Eur. J. Pharmacol. 1988; 148: 297–299
  • Peroutka S. J., Snyder S. H. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol. Pharmacol. 1979; 16: 687–699
  • Peroutka S. J., Hamik A., Harrington M. A., Hoffman A. J., Mathis C. A., Pierce P. A., Wang S. S.H. (R)-(-)-[77Br]4-bromo-2,5-dimethoxyamphetamine labels a novel 5-hydroxytryptamine binding site in brain membranes. Mol. Pharmacol. 1988; 34: 537–542
  • Peters J. A., Lambert J. L. Electrophysiology of 5-HT3 receptors in neuronal cell lines. TIPS 1989; 10: 172–175
  • Pritchett D. B., Bach A. W. J., Wozny M., Taleb O., Dal Toso R., Shih J. C., Seeburg P. H. Structure and functional expression of cloned rat serotonin 5-HT2 receptor. EMBO J. 1988; 7: 4135–4140
  • Richardson B. P., Engel G. The pharmacology and function of the 5-HT3 receptors Trends Neurosci. 1986; 9: 424–428
  • Richardson B. P., Engel G., Donatsch P., Stadler P. A. Identification of serotonin M receptor subtypes and their specific blockade by a new class of drugs. Nature (London) 1985; 316: 126–131
  • Roth B. L., Nakaki T., Chuang D.-M., Costa E. Aortic recognition sites for serotonin (5-HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacol. 1984; 23: 1223–1225
  • Sanders-Bush E. The Serotonin Receptors. Humana Press. 1989; 388
  • Sanger G. J. Increased gut cholinergic activity and antagonism of 5-hydroxytryptamine M-receptors by BRL 24924: potential clinical importance of BRL 24924. Br. J. Pharmacol. 1987; 91: 77–87
  • Schlicker E., Fink K., Göthert M., Hoyer D., Molderings G., Roschke I., Schoeffter P. The pharmacological properties of the presynaptic 5-HT autoreceptor in the pig brain cortex conform to the 5-HT10 receptor subtype. Naunyn-Schmiedeberg's Arch. Pharmacol. 1989; 340: 45–51
  • Schoeffter P., Hoyer D. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus. Br. J. Pharmacol. 1988; 95: 975–985
  • Schoeffter P., Hoyer D. 5-Hydroxytryptamine 5HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some β-adrenoceptor antagonists. Naunyn-Schmiedeberg's Arch. Pharmacol. 1989; 340: 285–292
  • Schoeffter P., Hoyer D. 5-hydroxytryptamine (5-HT) induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT1D receptor subtype. J. Pharmacol. Exp. Therap. 1990; 252: 387–395
  • Schoeffter P., Waeber C., Palacios J. M., Hoyer D. The serotonin 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra. Naunyn Schmledeberg's Arch. Pharmacol. 1988; 337: 602–608
  • Seuwen K., Magnaldo I., Pouysségur J. Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HT1B receptors coupled to a Gi-protein. Nature 1988; 335: 254–256
  • Shenker A., Maayani S., Weinstein H., Green J. P. Enhanced serotonin-stimulated adenylate cyclase activity in membranes from adult guinea-pig hippocampus. Life Sci. 1983; 32: 2335–2342
  • Shenker A., Maayani S., Weinstein H., Green J. P. Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are descriminated by 5-carboxamidotryptamine and spiperone. Eur. J. Pharmacol. 1985; 109: 427–429
  • Shenker A., Maayani S., Weinstein H., Green J. P. Pharmacological characterization of two 5-hydroxtryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol. Pharmacol. 1987; 31: 357–367
  • Waeber C., Dietl M. M., Hoyer D., Probst A., Palacios J. M. Visualization of a novel serotonin recognition site (5-HT1D) in the human brain by autoradiography. Neurosci. Lett. 1988; 88: 11–16
  • Waeber C., Dietl M. M., Hoyer D., Palacios J. M. 5-HT1 receptors in the vertebrate brain: regional distribution examined by autoradiography. Naunyn Schmiedeberg's Arch. Pharmacol. 1989; 340: 486–494
  • Waeber C., Dixon K., Hoyer D., Falacios J. M. Localization by autoradiography of neuronal 5-HT3receptors in mouse CNS. Eur. J. Pharmacol. 1988; 151: 351–352
  • Waeber C., Schoeffter P., Palacios J. M., Hoyer D. Molecular pharmacology of 5-HT1D recognition sites: radioligand binding studies in human, pig and calf brain membranes. Naunyn Schmiedeberg's Arch. Pharmacol. 1988; 337: 595–601
  • Waeber C., Schoeffter P., Palacios J. M., Hoyer D. 5-HT1D receptors in the guinea-pig and pigeon brain: radioligand binding and biochemical studies. Naunyn-Schmiedeberg's Arch. Pharmacol. 1989; 340: 479–485
  • Watling K. J., Aspley S., Swain C. J., Saunders J. [3H]-Quaternised ICS 205–930 labels 5-HT3 receptor binding sites in rat brain. Eur. J. Pharmacol. 1988; 149: 397–398
  • Weiss S., Sebben M., Kemp D. E., Bockaert J. Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur. J. Pharmacol. 1986; 120: 227–230
  • Yakel J. L., Jackson M. B. 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron. 1988; 1: 615–621

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.