7
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Species- and Subtype-Specific Recognition by Antibody WF6 of a Sequence Segment Forming an α-Bungarotoxin Binding Site on the Nicotinic Acetylcholine Receptor α Subunit

, , , , &
Pages 299-321 | Published online: 26 Sep 2008

References

  • Raftery M. A., Hunkapiller M. W., Strader C. D., Hood L. E. Acetylcholine receptor: complex of homologous subunits. Science 1980; 208: 1454–1457
  • Conti-Tronconi B. M., Raftery M. A. The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Annu. Rev. Biochem. 1982; 51: 491–530
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takahima H., Inayama S., Miyata T., Numa S. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 1983; 302: 528–532
  • Conti-Tronconi B. M., Dunn S. M. J., Barnard E. A., Dolly J. O., Lai F. A., Ray N., Raftery M. A. Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins. Proc. Natl. Acad. Sci. USA 1985; 82: 5208–5212
  • Luetje C. W., Patrick J., Seguela P. Nicotine receptors in the mammalian brain. FASEB J. 1990; 4: 2753–2760
  • Stroud R. M., McCarthy M. P., Shuster M. Nicotinic acetylcholine receptor superfamily of ligand-gated ion channels. Biochemistry 1990; 29: 11009–11023
  • Noda M., Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Hirose T., Inayama S., Numa S. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature 1983; 305: 818–823
  • Merlie J. P., Sebbane R., Gardner S., Lindstrom J. cDNA clone for the alpha subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Proc. Natl. Acad. Sci. USA 1983; 80: 3845–3849
  • Boulter J., Luyten W., Evans K., Mason P., Ballivet M., Goldman D., Heinemann S., Patrick J. Isolation of a clone coding for the α subunit of a mouse acetylcholine receptor. J. Neuroscience 1985; 5: 2545–2552
  • Isenberg K. E., Mudd J., Shah V., Merlie J. P. Nucleotide sequence of the mouse muscle nicotinic acetylcholine receptor alpha subunit. Nuclear Acids Res. 1986; 14: 5111
  • Nef P., Onesyer C., Alliod C., Couturier S., Ballivet M. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO 1988; 7: 595–601
  • Baldwin T. J., Yoshihara C. M., Blackmer K., Kintner C. R., Burden S. J. Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis. J. Cell Biol. 1988; 106: 469–478
  • Neumann D., Barchan D., Horowitz M., Kochva E., Fuchs S. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit. Proc. Natl. Acad. Sci. USA 1989; 86: 7255–7259
  • Cooper E., Couturier S., Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature 1991; 350: 235–238
  • Anand R., Conroy W. G., Schoepfer R., Whiting P., Lindstrom J. Neuronal nicotinic acetylcholine receptors expressed in Xenopus ooctyes have a pentameric quaternary structure. J. Biol. Chem. 1991; 266: 11192–11198
  • Schoepfer R., Whiting P., Esch F., Blacher R., Shimasaki C., Lindstrom J. cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor. Neuron 1988; 1: 241–248
  • Schoepfer R., Conroy W. G., Whiting P., Gore M., Lindstrom J. Brain α-bungarotoxin binding protein cDNAs from MABs reveal subtypes of this branch of the ligand-gated ion channel gene family. Neuron 1990; 5: 35–48
  • Boulter J., O'Shea-Greenfield A., Duvoisin R. M., Connolly J. G., Wada E., Jensen A., Gardner P. D., Ballivet M., Deneris E. S., McKinnon D., Heinemann S., Patrick J. α3, α5, an β4: Three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J. Biol. Chem. 1990; 265: 4472–4482
  • Couturier S., Bertrand D., Matter J.-J., Hernandez M.-C., Bertrand S., Millar N., Valera S., Barkas T., Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 1990; 5: 847–856
  • Couturier S., Erkman L., Valera S., Rungger D., Bertrand S., Boulter J., Ballivet M., Bertrand D. α5, α3, and non-α3: three clustered avian genes encoding nicotinic acetylcholine receptor-related subunits. J. Biol. Chem. 1990; 265: 17560–17567
  • Wolosin J. M., Lyddiatt A., Dolly J. O., Barnard E. A. Stoichiometry of the ligand-binding sites in the acetylcholine-receptor oligomer from muscle and from electric organ. Measurement by affinity alkylation with bromoacetylcholine. Eur. J. Biochem. 1990; 109: 495–505
  • Pedersen S. E., Dreyer E. B., Cohen J. B. Location of ligand-binding sites on the nicotinic acetylcholine receptor α subunit. J. Biol. Chem. 1986; 261: 13735–13743
  • Pedersen S. E., Cohen J. B. d-Tubocurarine binding sites are located at α-γ and α-δ subunit interfaces of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 1990; 87: 2785–2789
  • Kao P. N., Dwork A. J., Kaldany R. R., Silver M. L., Wideman J., Stein S., Karlin A. Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem. 1984; 259: 11662–11665
  • Kao P. N., Karlin A. Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues. J. Biol. Chem. 1986; 261: 8085–8088
  • Dennis M., Giraudat J., Kitzybas-Hibert F., Goeldner M., Hirth C., Chang J.-Y., Lazure C., Chretien M., Changeux J.-P. Amino acids of the Torpedo marmorata acetylcholine receptor alpha subunit labelled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 1988; 27: 2346–2357
  • Mosckovitz R., Gershoni J. M. Three possible disulfides in the acetylcholine receptor α-subunit. J. Biol. Chem. 1988; 263: 1017–1022
  • Kellaris K. V., Ware D. K., Smith S., Kyte J. Assessment of the number of free cysteines and isolation and identification of cystine-containing peptides from acetylcholine receptor. Biochemistry 1989; 28: 3469–3482
  • Watters D., Maelicke A. Organization of ligand binding sites at the acetylcholine receptor: a study with monoclonal antibodies. Biochemistry 1983; 22: 1811–1819
  • Fels G., Maelicke A., Schafer D. S., Walrond J.-P., Reese Th. S. Molecular Basis of Nerve Activity, J.-P. Changeux, F. Hucho, A. Maelicke, D. Neuman. Walter de Gruyter, New York, NY 1985; 197–208
  • Fels G., Plümer-Wilk R., Schreiber M., Maelicke A. A monoclonal antibody interfering with binding and response of the acetylcholine receptor. J. Biol. Chem. 1986; 251: 15746–15754
  • Mihovilovic M., Richman D. P. Monoclonal antibodies as probes of the α-bungarotoxin and cholinergic binding regions of the acetylcholine receptor. J. Biol. Chem. 1987; 262: 4978–4986
  • Maelicke A., Fels G., Plümer-Wilk R., Wolff E. K., Covarrubias M., Methfessel C. Ion Channels in Neural Membranes, J. M. Ritchie, R. D. Keynes, L. Bolis. Alan R. Liss, Inc., New York, NY 1986; Vol. 20: 275–282
  • Maelicke A., Watters D., Fels G. Structure and Function of the Nicotinic Acetylcholine Receptor, A. Maelicke. NATO ASI Series H, Springer Verlag, Berlin 1986; Vol. 3: 83–91
  • Chinchetru M. A., Marquez J., Garcia-Borron J. C., Richman D. P., Martinez-Carrion M. Interaction of nicotinic acetylcholine receptor with two monoclonal antibodies recognizing different epitopes. Biochemistry 1989; 28: 4222–4229
  • Conti-Tronconi B. M., Fels G., McLane K., Tang F., Bellone M., Kokla A., Tzartos S., Milius R., Maelicke A. Molecular Biology of Neuroreceptors and Ion Channels, A. Maelicke. Springer-Verlag, Heidelberg 1989; 291–309
  • Conti-Tronconi B. M., Tang F., Diethelm B. M., Spencer S. R., Reinhardt-Maelicke S., Maelicke A. Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies, and α-bungarotoxin. Biochemistry 1990; 29: 6221–6230
  • Conti-Tronconi B. M., Diethelm B. M., Wu X., Tang F., Bertazzon T., Schröder B., Reinhardt-Maelicke S., Maelicke A. α-Bungarotoxin and the competing antibody WF6 interact with different amino acids within the same cholinergic subsite. Biochemistry 1991; 30: 2575–2584
  • McLane K. E., Wu X., Conti-Tronconi B. M. Identification of a brain acetylcholine receptor α subunit able to bind α-bungarotoxin. J. Biol. Chem. 1990; 265: 9816–9824
  • McLane K. E., Wu X., Diethelm B., Conti-Tronconi B. M. Structural determinants of α-bungarotoxin binding to the sequence segment 181–200 of the muscle nicotinic acetylcholine receptor α subunit: effects of cysteine/cystine modification and species-specific amino acid substitutions. Biochemistry 1991; 30: 4925–4934
  • Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 1985; 82: 5131–5135
  • Heinrickson S., Meredith B. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal. Biochem. 1984; 136: 65–74
  • Schröder H., Zilles K., Maelicke A., Hajos F. Immunohisto- and cytochemical localization of cortical nicotinic cholinoceptors in rat and man. Brain Res. 1989; 502: 287–295
  • Elliott J., Dunn S. M. J., Blanchard S. G., Raftery M. A. Specific binding of perhydrohistrionicotoxin in Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 1979; 76: 2576–2579
  • Elliott J., Blanchard S. G., Wu W., Miller J., Strader C. D., Hartig P., Moore H.-P. H., Racs J., Raftery M. A. Purification of Torpedo californica post synaptic membrane and fractionation of their constituent proteins. Biochem. J. 1980; 185: 667–673
  • Neubig R. R., Cohen J. B. Equilibrium binding of [3H]acetylcholine by Torpedo postsynaptic membranes: stoichiometry and ligand interactions. Biochemistry 1979; 18: 5464–5475
  • Munson P. J., Rodbard D. LIGAND: a versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 1980; 17: 181–184
  • McPherson G. A. A practical computer-based approach to the analysis of radioligand binding experiments. Comput. Programs in Biomed. 1983; 17: 107–114
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of the alpha subunit precursor of the Torpedo californica acetylcholine receptor deduced from a cDNA sequence. Nature 1982; 299: 793–797
  • Wada K., Ballivet M., Boulter J., Connolly J., Wada E., Deneris E., Swanson L., Heinemann S., Patrick J. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 1988; 240: 330–334
  • Boulter J., Evans K., Goldman D., Martin G., Treco D., Heinemann S., Patrick J. Isolation of a cDNA clone coding for a possible neuronal nicotinic acetylcholine receptor α subunit. Nature 1986; 319: 368–374
  • Goldman D., Deneris E., Kochhar A., Patrick J., Heinemann S. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 1987; 48: 965–973
  • McLane K. E., Wu X., Schoepfer R., Lindstrom J. M., Conti-Tronconi B. M. Identification of sequence segments forming the α-bungarotoxin binding sites on two nicotinic acetylcholine receptor α subunits from the avian brain. J. Biol. Chem. 1991; 266: 15230–15239

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.