17
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Transcription Activation by Nuclear Receptors

Pages 667-691 | Published online: 26 Sep 2008

References

  • Gronemeyer H., Meyer M. E., Bocquel M. T., Kastner P., Turcotte B., Chambon P. Progestin receptors: Isoforms and antihormone action. J. Steroid Biochem. Molec. Biol. 1991; 40: 271–278
  • Mangelsdorf D. J., Ong E. S., Dyck J. A., Evans R. M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 1990; 345: 224–229
  • Leid M., Kastner P., Lyons R., Nakshatri H., Saunders M., Zacharewski T., Chen J. Y., Staub A., Garnier J. M., Mader S., Chambon P. Purification, cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to efficiently bind target sequences. Cell 1992; 68: 377–395
  • Heyman R. A., Mangelsdorf D. J., Cyck J. A., Stein R. B., Eichele G., Evans R. M., Thaller C. 9–cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992; 68: 397–406
  • Levin A. A., Sturzenbecker L. J., Kazmer S., Busakowski T., Huselton C., Allenby G., Speck J., Kratzeisen C., Rosenberger M., Lovey A., Grippo J. F. The 9–cis stereoisomer of retinoic acid binds and activates the nuclear receptor RXRalpha. Nature 1992; 355: 359–361
  • Ylikomi T., Bocquel M. T., Berry M., Gronemeyer H., Chambon P. Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. 1992, submitted
  • Beato M. Gene regulation by steroid hormones. Cell 1989; 56: 335–344
  • Evans R. M. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895
  • Green S., Chambon P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 1988; 4: 309–314
  • Gronemeyer H. Transcription activation by estrogen and progesterone receptors. Ann. Rev. Genet. 1991; 25: 89–123
  • Beato M. Transcriptional control by nuclear receptors. FASEB J. 1991; 5: 2044–2051
  • Wahli W., Martinez E. Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J. 1991; 5: 2243–2249
  • Forman B. M., Samuels H. H. Interactions among a subfamily of nuclear hormone receptors: The regulatory zipper model. Mol. Endocrinol. 1990; 4: 1293–1301
  • Hager G. L., Archer T. K. Nuclear Hormone Receptors, M. G. Parker. Academic Press, London 1991; 217–234
  • Klein-Hitpass L., Ryffel G. U., Heitlinger E., Cato A. C. B. A 13 bp palindrome is a functional estrogen responsive element and interacts specifically with estrogen receptor. Nucl. Acids Res. 1988; 16: 647–663
  • Martinez A., Givel F., Wahli W. The estrogen-responsive element as an inducible enhancer: DNA sequence requirements and conversion to a glucocorticoid responsive element. EMBO J. 1987; 6: 3719–3727
  • Klein-Hitpass L., Schorpp M., Wagner U., Ryffel G. U. An estrogen-responsive element derived from the 5′flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 1986; 46: 1053–1061
  • Klock G., Straehle U., Schütz B. Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature 1987; 329: 734–735
  • Nordeen S. K., Suh B. J., Kuhnel B., Hutchinson C. A., III. Structural determinants of a glucocorticoid receptor recognition element. Mol. Endocrinol. 1990; 4: 1866–1873
  • Mader S., Kumar V., de Verneuil H., Chambon P. Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 1989; 338: 271–274
  • Umesono K., Evans R. M. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 1989; 57: 1139–1146
  • Danielsen M., Hinck L., Ringold G. M. Two amino acids within the knuckle of the first zinc finger specific DNA response element activation by the glucocorticoid receptor. Cell 1989; 57: 1131–1138
  • Härd T., Kellenbach E., Boelens R., Kapstein R., Dahlman K., Carlstedt-Duke J., Freedman L. P., Maler B. A., Hyde E. I., Gustafsson J. A., Yamamoto K. R. 1HNMR studies of the glucocorticoid receptor DNA-binding domain sequential assignments and identification of secondary structure elements. Biochemistry 1990; 29: 9015–9023
  • Schwabe J. W. R., Neuhaus D. D., Rhodes D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 1990; 348: 458–461
  • Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991; 352: 497–505
  • Ham J., Thompson A., Needham M., Webb P., Parker M. Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus. Nucl. Acids Res. 1988; 16: 5263–5276
  • Shemshedini L., Knauthe R., Sassone-Corsi P., Pornon A., Gronemeyer H. Cell-specific inhibitory and stimulatory effects of Fos and Jun on transcription activation by nuclear receptors. EMBO J. 1991; 12: 3839–3849
  • Arriza J. L., Weinberger C., Cerelli G., Glaser T. M., Handelin B. L., Housman D. E., Evans R. M. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987; 237: 268–275
  • Glass C. K., Holloway J. M., Devary O. V., Rosenfeld M. G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 1988; 54: 313–323
  • Umesono K., Murakami K. K., Thompson C. C., Evans R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991; 65: 1255–1266
  • Näär A. M., Boutin J. M., Lipkin S. M., Yu V. C., Holloway J. M., Glass C. K., Rosenfeld M. G. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 1991; 65: 1276–1279
  • Mangelsdorf D. J., Umesono K., Kliewer S. A., Borgmeyer U., Ong E. S., Evans R. M. A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 1991; 66: 555–561
  • Smith W. C., Nakshatri H., Leroy P., Rees J., Chambon P. A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J. 1991; 10: 2223–2230
  • de Verneuil H., Metzger D. The lack of the transcriptional activation of the v-erbA oncogene is in part due to a mutation present in the DNA binding domain of the protein. Nucl. Acids Res. 1990; 18: 4489–4497
  • Yu V. C., Delsert C., Andersen B., Holloway J. M., Devary O. V., Näär A. M., Kim S. Y., Boutin J. M., Glass C. K., Rosenfeld M. G. RXRB: A coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 1992; 67: 1251–1266
  • Meyer M. E., Pornon A., Ji J., Bocquel M. T., Chambon P., Gronemeyer H. Agonistic and antagonistic activities or RU486 on the functions of the human progesterone receptor. EMBO J. 1990; 12: 3923–3932
  • Gronemeyer H., Turcotte B., Quirin-Stricker C., Bocquel M. T., Meyer M. E., Krozowski Z., Jeltsch J. M., Lerouge T., Garnier J. M., Chambon P. The chicken progesterone receptor: sequence, expression and functional analysis. EMBO J. 1987; 6: 3985–3994
  • Shemshedini L., Ji J., Brou C., Chambon P., Gronemeyer H. In vitro activity of the transcription activation functions of the progesterone receptor. J. Biol. Chem. 1992; 267: 1834–1839
  • Webster N. J. G., Green S., Jin J. R., Chambon P. The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell 1988; 54: 199–207
  • Tora L., White J., Brou C., Tasset D., Webster N., Scheer E., Chambon P. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 1989; 59: 477–487
  • Kumar V., Green S., Stack G., Berry M., Jin J. R., Chambon P. Functional domains of the human estrogen receptor. Cell 1987; 51: 941–951
  • Godowski P. J., Rusconi S., Miesfeld R., Yamamoto K. R. Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 1987; 325: 365–368
  • Hollenberg S. M., Evans R. M. Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 1988; 55: 899–906
  • Webster N. J. G., Green S., Tasset D., Ponglikitmongkol M., Chambon P. The transcriptional activation function located in the hormone-binding domain of the human oestrogen receptor is not encoded in a single exon. EMBO J. 1989; 8: 1441–1446
  • Berry M., Metzger D., Chambon P. Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4–hydroxytamoxifen. EMBO J. 1990; 9: 2811–2818
  • Bocquel M. T., Kumar V., Stricker C., Chambon P., Gronemeyer H. The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucl. Acids Res. 1989; 17: 2581–2595
  • Martinez E., Wahli W. Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity. EMBO J. 1989; 8: 3781–3791
  • Schmid W., Straehle U., Schütz G., Schmitt J., Stunnenberg H. Glucocorticoid receptor binds cooperatively to adjacent recognition sites. EMBO J. 1989; 8: 2257–2263
  • Tasset D., Tora L., Fromental C., Scheer E., Chambon P. Distinct classes of transcriptional activating domains function by different mechanisms. Cell 1990; 62: 1177–1187
  • Meyer M. E., Quirin-Stricker C., Lerouge T., Bocquel M. T., Gronemeyer H. A limiting factor mediates the differential activation of promoters by the human progesterone receptor isoforms. J. Biol. Chem. 1992; 267, in press
  • Meyer M. E., Gronemeyer H., Turcotte B., Bocquel M. T., Tasset D., Chambon P. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 1989; 57: 433–442
  • Gill G., Ptashne M. Negative effect of the transcriptional activator GAL4. Nature 1988; 334: 721–724
  • Baulieu E. E. Contragestion and other clinical applications of RU486, an antiprogesterone at the receptor. Science 1989; 245: 1351–1357
  • Renoir J. M., Radanyi C., Faber L., Baulieu E. E. The non-DNA-binding heterooligomeric form of mammalian steroid hormone receptors contains a hsp90–bound 59–kilodalton protein. J. Biol. Chem. 1990; 265: 10740–10745
  • Ullmann A., Teutsch G., Philibert D. RU486. Scientific American 1990; 262: 18–24
  • Moguilewski M., Philibert D. The Antiprogestin Steroid RU486 and Human Fertility Control, E. E. Baulieu, S. J. Segal. Plenum, New York, 87–98
  • Teutsch G. The Antiprogestin Steroid RU486 and Human Fertility Control, E. E. Baulieu, S. J. Segal. Plenum, New York, 27–47
  • Wakeling A. E., Bowler J. Biology and mode of action of pure antiestrogens. J. Steroid Biochem. 1988; 30: 141–147
  • Fawell S. E., White R., Hoare S., Sydenham M., Page M., Parker M. G. Inhibition of estrogen receptor-DNA binding by the “pure” antiestrogen ICI 164 384 appears to be mediated by impaired receptor dimerization. Proc. Natl. Acad. Sci. USA 1990; 87: 6883–6887
  • Fawell S. E., Lees J. A., White R., Parker M. G. Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 1990; 60: 953–962
  • Sabbah M., Gouilleux F., Sola B., Redeuilh G., Baulieu E. E. Structural differences between the hormone and antihormone estrogen receptor complexes bound to the hormone response element. Proc. Natl. Acad. Sci. USA 1991; 88: 390–394
  • Metzger D., Berry M., Chambon P. 1992, in preparation
  • Pham T. A., Elliston J. F., Nawaz Z., McDonnell D. P., Tsai M. J., O'Malley B. W. Antiestrogen can establish nonproductive complexes and alter chromatin structure at target enhancers. Proc. Natl. Acad. Sci. USA 1991; 88: 3125–3129
  • Benhamou B., Garcia T., Lerouge T., Vergezac A., Gofflo D., Bigogne C., Chambon P., Gronemeyer H. A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science 1992; 255: 206–209
  • Klein-Hitpass L., Cato A. C. B., Henderson D., Ryffel G. U. Two types of antiprogestins identified by their differential action in transcriptionally active extracts from T47D cells. Nucl. Acids Res. 1991; 19: 1227–1234
  • Bocquel M. T., Ji J., Ylikomi T., Benhamou B., Vergezac A., Chambon P., Gronemeyer H. Type II antagonists impair DNA binding of steroid hormone receptors. 1992, submitted
  • Moudgil V. K., Nath R., Bhakta A., Nakao M. ZK98299, a novel antiprogesterone does not interact with chicken oviduct progesterone receptor. Biochim. Biophys. Acta 1991; 1094: 185–192
  • Garcia T., Benhamou B., Gofflo D., Vergezac A., Philibert D., Chambon P., Gronemeyer H. Manuscript in preparation

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.