5
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Independent and Coordinate Regulation of β1- and β2-Adrenergic Receptors in Rat C6 Glioma Cells

, , &
Pages 281-296 | Published online: 26 Sep 2008

References

  • Hausdorff W. P., Caron M. G., Lefkowitz R. J. Turning off the signal: desensitization of β‐adrenergic receptor function. FASEB J. 1990; 4: 2881–2889
  • Perkins J. P., Hausdorff W. P., Lefkowitz R. J. Mechanisms of ligand‐induced desensitization of beta‐adrenergic receptors. The β‐adrenergic Receptor, J. P. Perkins. Humana, New York 1991; 73–124
  • Raposo G., Dunia I., Delavier‐Klutchko C., Kaveri S., Strosberg A. D., Benedetti E. L. Internalization of β‐adrenergic receptor in A431 cells involves non‐coated vesicles. Eur. J. Cell Biol. 1989; 50: 340–352
  • von Zastrow M., Kobilka B. K. Ligand‐regulated internalization and recycling of human β‐adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J. Biol. Chem. 1992; 267: 3530–3538
  • Wang H., Berrios M., Malbon C. C. Localization of β‐adrenergic receptors in A431 cells in situ: effect of chronic exposure to agonist. Biochem. J. 1989; 263: 533–538
  • Staehelin M., Simons P. Rapid and reversible disappearence of β‐adrenergic cell surface receptors. EMBO J. 1982; 1: 187–190
  • Harden T. K., Cotton C. U., Waldo G. L., Lutton J. K., Perkins J. P. Catecholamine‐induced alteration in sedimentation behavior of membrane bound β‐adrenergic receptors. Science 1980; 210: 441–443
  • Kassis S., Olasmaa M., Sullivan M., Fishman P. H. Desensitization of the β‐adrenergic receptor‐coupled adenylate cyclase in cultured mammalian cells: receptor sequestration versus receptor function. J. Biol. Chem. 1986; 261: 12233–12237
  • Hadcock J. R., Malbon C. C. Agonist regulation of gene expression of adrenergic receptors and G proteins. J. Neurochem. 1993; 60: 1–9
  • Collins S., Bouvier M., Bolanowski M. A., Caron M. G., Lefkowitz R. J. cAMP stimulates transcription of the β‐adrenergic receptor gene in response to short‐term agonist exposure. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 4853–4857
  • Bouvier M., Collins S., O'Dowd B. F., Campbell P. T., de Blasi A., Kobilka B. K., Macgregor C., Irons G. P., Caron M. G., Lefkowitz R. J. Two distinct pathways for cAMP‐mediated down‐regulation of the β‐adrenergic receptor. J. Biol. Chem. 1989; 264: 16786–16792
  • Hadcock J. R., Ros M., Malbon C. C. Agonist regulation of β‐adrenergic receptor mRNA: analysis in S49 mouse lymphoma mutants. J. Biol. Chem. 1989; 264: 13956–13961
  • Zhou X. ‐M., Fishman P. H. Desensitization of the human β‐adrenergic receptor: involvement of the cyclic AMP‐dependent but not a receptor‐specific protein kinase. J. Biol. Chem. 1991; 266: 7462–7468
  • Fishman P. H., Nussbaum E., Duman R. S. Characterization and regulation of β‐adrenergic receptors in a human neuro‐epithelioma cell line. J. Neurochem. 1991; 56: 596–602
  • Neve K. A., Barrett D. A., Molinoff P. B. Selective regulation of beta‐1 and beta‐2 adrenergic receptors by atypical agonists. J. Pharmacol. Exp. Ther. 1985; 235: 657–664
  • Suzuki T., Nguyen C. T., Nantel F., Bonin H., Valiquette M., Frielle T., Bouvier M. Distinct regulation of β‐ and β‐adrenergic receptors in Chinese hamster fibroblasts. Mol. Pharmacol. 1993; 41: 542–548
  • Valiquette M., Bonin H., Hnatowich M., Caron M. G., Lefkowitz R. J., Bouvier M. Involvement of tyrosine residues located in the carboxyl tail of the human β‐adrenergic receptor in agonist‐induced down‐regulation of the receptor. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 5089–5093
  • Valiquette M., Bonin H., Bouvier M. Mutation of tyrosine‐350 impairs the coupling of the β‐adrenergic receptor to the stimulatory guanine nucleotide binding protein without interfering with receptor down‐rgulation. Biochemistry 1993; 32: 4979–4985
  • Homburger V., Lucas M., Rosenbaum E., Vassent G., Bockaert J. Presence of both beta1‐ and beta2‐adrenergic receptors in a single cell type. Mol. Pharmacol. 1981; 20: 463–469
  • Parker K. K., Norenberg M. D., Vernadakis A. “Transdifferentiation of C6 glial cells in culture. Science 1980; 208: 179–181
  • Machida C. A., Bunzow J. R., Searles R. P., Van Tol H., Tester B., Neve K. A., Teal P., Nipper V., Civelli O. Molecular cloning and expression of the rat β‐adrenergic receptor gene. J. Biol. Chem. 1991; 265: 12960–12965
  • Zaremba T. G., Fishman P. H. Desensitization of catecholamine‐stimulated adenylate cyclase and down‐regulation of beta‐adrenergic receptors in rat glioma C6 cells: role of cyclic AMP and protein synthesis. Mol. Pharmacol. 1984; 26: 206–213
  • Mallorga P., Tallman J. F., Fishman P. H. Differences in the β‐adrenergic responsiveness between high and low passage rat glioma C6 cells. Biochim. Biophys. Acta 1981; 678: 221–229
  • Fishman P. H., Finberg J. P. M. Effect of the tricyclic antidepressant desipramine on β‐adrenergic receptors in cultured rat glima C6 cells. J. Neurochem. 1987; 49: 282–289
  • Neve K. A., McGonigle P., Molinoff P. B. Quantitative analysis of the selectivity of radioligands for subtypes of beta adrenergic receptors. J. Pharmacol. Exp. Ther. 1986; 238: 46–53
  • Dooley D. J., Bittiger H., Reymann N. C. CGP 20712 A: a useful tool for quantitating β1‐ and β2‐adrenoceptors. Eur. J. Pharmacol. 1986; 130: 137–139
  • Nanoff C., Freissmuth M., Schütz W. The role of a low β1‐adrenoceptor selectivity of [3H]CGP‐12177 for resolving subtype‐selectivity of competitive ligands. Naunyn Schmiedeberg's Arch. Pharmacol. 1987; 336: 519–525
  • Dooley D. J., Bittiger H. Quantitative assessment of central β1‐ and β2‐adrenoceptor regulation using CGP 20712 A. J. Pharmacol. Methods 1987; 18: 131–136
  • Bürgisser E. Model testing in radioligand/receptor interaction by Monte Carlo simulation. J. Receptor Res. 1983; 3: 261–281
  • Fishman P. H., Mallorga P., Tallman J. F. Catecholamineinduced desensitization of adenylate cyclase in rat glioma C6 cells: evidence for a specific uncoupling of beta‐adrenergic receptors from a functional regulatory component of adenylyate cyclase. Mol. Pharmacol. 1981; 20: 310–318
  • Moylan R. D., Barovsky K., Brooker G. N6 O2‐dibutyryl cyclic AMP and cholera toxin‐induced β‐adrenergic receptor loss in cultured cells. J. Biol. Chem. 1982; 257: 4947–4950
  • Nanoff C., Freissmuth M., Tuisel E., Schütz W. A different desensitization pattern of cardiac β‐adrenoceptor subtypes by prolonged in vivo infusion of isoprenaline. J. Cardiovasc. Pharmacol. 1989; 13: 198–203
  • Hough C., Chuang D. ‐M. Differential down‐regulation of β1‐and β2‐adrenergic receptor mRNA in C6 glioma cells. Biochem. Biophys. Res. Commun. 1990; 170: 46–52
  • Ktistakis N. T., Thomas D., Roth M. G. Characteristics of the tyrosine recognition signal for internalization of transmembrane surface glycoproteins. J. Cell Biol. 1990; 111: 1393–1407
  • Frielle T. S., Collins S., Daniel K. W., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning of the cDNA for the human β1‐adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 7920–7924
  • Gocayne J., Robinson D. A., FitzGerald M. G., Chung F. ‐Z., Kerlavage A. R., Lentes K. ‐L., Lai J., Wang C. ‐D., Fraser C. M., Venter J. C. Primary structure of rat cardiac β‐adrenergic and muscarinic cholinergic rceptors obtained by automated DNA sequence analysis: further evidence for a multigene family. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 8296–8300

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.