29
Views
51
CrossRef citations to date
0
Altmetric
Research Article

Anomalous Behavior of CGP 12177A ON β2-Adrenergic Receptors

&
Pages 1-23 | Published online: 26 Sep 2008

References

  • Staehelin M., Simons P., Jaeggi K., Wigger N. CGP12177: a hydrophilic β-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. J. Biol. Chem. 1983; 258: 3496–3502
  • Staehelin M., Simons P. Rapid and reversible disappearence of β-adrenergic cell surface receptors. EMBO J. 1982; 1: 187–190
  • Hertel C., Müller P., Portenier M., Staehelin M. Determination of the desensitization of β-adrenergic receptors by [3H]CCP-12177. Biochem. J. 1983; 216: 669–674
  • Kassis S., Olasmaa M., Sullivan M., Fishman P. H. Desensitization of the β-adrenergic receptor-coupled adenylate cyclase in cultured mammalian cells: receptor sequestration versus receptor function. J. Biol. Chem. 1986; 261: 12233–12237
  • Homburger V., Lucas M., Rosenbaum E., Vassent G., Bockaert J. Presence of bothbeta1beta2adrenergic receptors in a single cell type. Mol. Pharmacol. 1981; 20: 463–469
  • Mohell N., Dicker A. The β-adrenergic radioligand [3H] CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem. J. 1989; 261: 401–405
  • Scarpace P. J., Matheny M. Adenylate cyclase agonist properties of CGP-12177A in brown fat: evidence for atypical β-adrenergic receptors. Am. J. Physiol. 1991; 260: E226–E231
  • Granneman J. G., Whitty C. J. CGP 12177A modulates brown fat adenylate cyclase activity by interacting with two distinct receptor sites. J. Pharmacol. Exp. Ther. 1991; 256: 421–425
  • Langin D., Portillo M. P., Saulnier-Blache J.-S., Lafontan M. Coexistence of three β-adrenoceptor subtypes in white fat cells of various mammalian species. Eur. J. Pharmacol. 1991; 199: 291–301
  • Feve B., Emorine L. J., Lasnier F., Blin N., Baude B., Nahmias C., Strosberg A. D., Pairault J. Atypical β-adrenergic receptor in 3T3-F442A adipocytes. Pharmacological and molecular relationship with the human β3-adrenergic receptor. J. Biol. Chem. 1991; 266: 20329–20336
  • Lönnqvist F., Krief S., Strosberg A. D., Nyberg B., Emorine L. J., Arner P. Evidence for a functional β3-adrenoceptor in man. Br. J. Pharmacol. 1993; 110: 929–936
  • Emorine L. J., Marullo S., Briend-Sutren M.-M., Patey G., Tate K., Delavier-Klutchko C., Strosberg A. D. Molecular characterization of the human β3-adrenergic receptor. Science (Washington D. C.) 1989; 245: 1118–1121
  • Granneman J. G., Lahners K. N., Chaudhry A. Molecular cloning and expression of the rat β3-adrenergic receptor. Mol. Pharmacol. 1991; 40: 895–899
  • Muzzin P., Revelli J.-P., Kuhne F., Gocayne J. F., McCombie W. R., Venter J. C., Giacobino J.-P., Fraser C. M. An adipose tissue-specific β-adrenergic receptor. Molecular cloning and down-regulation in obesity. J. Biol. Chem. 1991; 266: 24053–24058
  • Muzzin P., Revelli J.-P., Fraser C. M., Giacobino J.-P. Radioligand binding studies of the atypical β3-adrenergic receptor in rat brown adipose tissue using [3H]CGP 12177. FEBS Lett. 1992; 298: 162–164
  • Revelli J.-P., Muzzin P., Paoloni A., Moinat M., Giacobino J.-P. Expression of the β3-adrenergic receptor in human white adipose tissue. J. Mol. Endocrinol. 1993; 10: 193–197
  • Blin N., Camoin L., Maigret B., Strosberg A. D. Structural, and conformational features determining selective signal transduction in the β3-adrenergic receptor. Mol. Pharmacol. 1993; 44: 1094–1104
  • Sheppard J. R., Wehner J. M., McSwigan J. D., Shows T. B. Chromosomal assignment of the gene for the human β2-adrenergic receptor. Proc. Natl. Acad. Sci. USA 1983; 80: 233–236
  • Tate K. M., Briend-Sutren M.-M., Emorine L. J., Delavier-Klutchko C., Marullo S., Strosberg A. D. Expression of three human β-adrenergic-receptor subtypes in transfected Chinese hamster ovary cells. Eur. J. Biochem. 1991; 196: 357–361
  • Kobilka B. K., Dixon R. A. F., Frielle T., Dohlman H. G., Bolanowski M. A., Sigal I. S., Yang-Feng T. L., Francke U., Caron M. G., Lefkowitz R. J. cDNA for the human β2-adrenergic receptor: a protein with multiple membrane-spaning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platlet-derived growth factor. Proc. Natl. Acad. Sci. USA 1987; 84: 46–50
  • Frielle T. S., Collins S., Daniel K. W., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning of the cDNA for the human β1-adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 7920–7924
  • Machida C. A., Bunzow J. R., Searles R. P., VanTol H., Tester B., Neve K. A., Teal P., Nipper V., Civelli O. Molecular cloning and expression of the rat β1-adrenergic receptor gene. J. Biol. Chem. 1991; 265: 12960–12965
  • Zhou X.-M., Pak M., Wang Z., Fishman P. H. Differences in desensitization between human β1- and β2-adrenergic receptors stably expressed in transfected hamster cells. Cellular. Signalling 1995; 7: 207–217
  • Zhou X.-M., Fishman P. H. Desensitization of the human β1-adrenergic receptor: involvement of the cyclic AMP-dependent but not a receptor-specific protein kinase. J. Biol. Chem. 1991; 266: 7462–7468
  • Fishman P. H., Nussbaum E., Duman R. S. Characterization and regulation of β1-adrenergic receptors in a human neuro-epithelioma cell line. J. Neurochem. 1991; 56: 596–602
  • Fishman P. H., Miller T., Curran P. K., Feussner G. K. Independent and coordinate regulation of β1- and β2-adrenergic receptors in rat C6 glioma cells. J. Receptor Res. 1994; 14: 281–296
  • Zaremba T. G., Fishman P. H. Desensitization of catechol-amine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells: role of cyclic AMP and protein synthesis. Mol. Pharmacol. 1984; 26: 206–213
  • Nanoff C., Freissmuth M., Schβtz W. The role of a low β1-adrenoceptor selectivity of [3H]CGP-12177 for resolving subtype-selectivity of competitive ligands. Naunyn Schmiedeberg's Arch. Pharmacol. 1987; 336: 519–525
  • Affolter H., Hertel C., Jaeggi K., Portenier M., Staehlin M. (-)-S-[3H]CGP-12177 and its use to determine the rate constants of unlabeled β-adrenergic antagonists. Proc. Natl. Acad. Sci. USA 1985; 83: 925–929
  • Hoyer D., Boddeke H. W.G. M. Partial agonist, full agonist, antagonists: dilemmas of definition. Trends Pharmacol. Sci. 1993; 14: 270–275
  • Zhu X., Gilbert S., Birnbaumer M., Birmbaumer L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density. Mol. Pharmacol. 1994; 46: 460–469
  • Kenakin T. P. Agonist-receptor efficacy I: mechanisms of efficacy and receptor promiscuity. Trends Pharmacol. Sci. 1995; 16: 188–192
  • Kenakin T. P. Agonist-receptor efficacy I: agonist trafficking of receptor signals. Trends Pharmacol. Sci. 1995; 16: 232–238
  • Zhong H., Minneman K. P. Close reciprocal regulation of β1- and β2-adrenergic receptors by dexamethasone in C6glioma cells: effects on catecholamine responsiveness. Mol. Pharmacol. 1993; 44: 1085–1093
  • Jasper J. R., Michel M. C., Insel P. A. Amplification of cyclic AMP generation reveals agonistic effects of certain β-adrenergic antagonists. Mol. Pharmacol. 1990; 37: 44–49
  • Cervantes-Olivier P., Delavier-Klutchko C., Durieu-Trautmann O., Kaveri S., Desmandril M., Strosberg A. D. The β2-adrenergic receptors of human epidermoid carcinoma cells bear two different types of oligosaccharides which influence expression on the cell surface. Biochem. J. 1988; 250: 133–143
  • Boege F., Ward M., Jβrss R., Hekman M., Helmreich E. J. M. Role of glycosylation for β2-adrenoceptor function in A431 cells. J. Biol. Chem. 1988; 263: 9040–9049
  • O'Dowd B. F., Hnatowich M., Caron M. G., Lefkowitz R. J., Bouvier M. Palmitoylation of the human β2-adrenergic receptor. Mutation of Cys341in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J. Biol. Chem. 1989; 264: 7564–7569
  • Asano T., Katada T., Gilman A. G., Ross E. M. Activation of the inhibitory GTP-binding protein of adenylate cyclase, G1by β-adrenergic receptors in reconstituted phsopholipids vesicles. J. Biol. Chem. 1984; 259: 9351–9354
  • Mallorga P., Tallman J. F., Henneberry R. C., Hirata F., Strittmatter W. T., Axelrod J. Proc. Natl. Acad. Sci. USA 1980; 77: 1341–1345
  • DeLean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 1980; 255: 7108–7117
  • Samama P., Cotecchia S., Costa T., Lefkowitz R. J. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 1993; 268: 4625–4636
  • Chidiac P., Hebert T. E., Valiquette M., Dennis M., Bouvier M. Inverse agonist activity of β-adrenergic antagonists. Mol. Pharmacol. 1994; 45: 490–499
  • Neubig R. R. Membrane organization in G-protein mechanisms. FASEB J. 1994; 8: 939–946

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.