65
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Introductory Lecture: In Vitro Translation Analysis of Integral Membrane Proteins

, , , , &
Pages 29-56 | Published online: 26 Jun 2009

References

  • Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157: 105–132
  • Eisenberg D., Schwarz E., Komaromy M., Wall R. J. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984; 179: 125–142
  • MacLennan D. H., Brandl C. J., Koreczak B., Green N. M. Amino acid sequence of the Ca2+ Mg2+ dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 1985; 316: 696–700
  • Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron-cryo-microscopy. J. Mol. Biol. 1990; 213: 899–929
  • Schertler G. F. X., Villa C., Henderson R. Projection structure of rhodopsin. Nature 1993; 362: 770–772
  • Vinzenz M. U., Schertler G. F. X. Low resolution of bovine Rhodopsin determined by electro-cryo-microscopy. Biophys. J. 1995; 68: 1776–1786
  • Frank H. A., Taremi S. S., Knox J. R. Crystallization and preliminary X-ray and optical spectroscopic characterization of the photochemical reaction center from Rhodobacter sphaeroides strain 2.4.1. J. Mol. Biol. 1987; 198: 139–141
  • Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 1995; 376: 660–669
  • Toyoshima C., Sasabe H., Stokes D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 1993; 362: 467–471, (erratum: Nature 363, 286, 1993).
  • Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. Molecular architecture and electrostatic properties of a bacterial porin. Science 1991; 254: 1627–1630
  • Hucho F., Gorne-Tschelnokow U., Strecker A. Beta-structure in the membrane-spanning part of the nicotinic acetylcholine receptor (or how helical are transmembrane helices?). Trends Biochem. Sci. 1994; 19: 383–387
  • Gorne-Tschelnokow U., Strecker A., Kaduk C., Naumann D., Hucho F. The transmembrane domains of the nicotinic acetylcholine receptor contain α-helical and β-structures. EMBO J. 1994; 13: 338–341
  • Shin J. M., Besancon M., Simon A., Sachs G. The site of action of pantoprazol in the gastric H/K ATPase. Biochim. Biophys. Acta 1993; 1148: 223–233
  • Shin J. M., Kajimura M., Arguello J. M., Kaplan J. H., Sachs G. Biochemical identification of transmembrane segments of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 1993; 269: 22533–22537
  • Shainskaya A., Karlish S. J. Evidence that the cation occlusion domain of Na/K-ATPase consists of a complex of membrane-spanning segments. Analysis of limit membrane-embedded tryptic fragments. J. Biol. Chem. 1994; 269: 10780–10789
  • Canfield V. A., Levenson R. Transmembrane organization of the Na,K-ATPase determined by epitope addition. Biochemistry 1993; 32: 13782–13786
  • Yoon K. L., Guidotti G. Studies on the membrane topology of the Na/K ATPase. J. Biol. Chem. 1994; 269: 28249–28258
  • Mata A. M., Matthews I., Tunwell R. E., Sharma R. P., Lee A. G., East J. M. Definition of surface-exposed and trans-membranous regions of the (Ca2+-Mg2+-ATPase of sarcoplasmic reticulum using anti-peptide antibodies. Biochem. J. 1992; 286: 567–580
  • Clarke D. M., Loo T. W., Maclennan D. M. Functional consequences of alterations to polar amino acids located in the transmembrane domain of the Ca-ATPase of the Sarcoplasmic reticulum. J. Biol. Chem. 1990; 265: 6262–6267
  • Mercier F., Bayle D., Besancon M., Joys T., Shin J. M., Lewin M. J. M., Prinz C., Reuben A. M., Soumarmon A., Wong H., Walsh J. H., Sachs G. Antibody epitope mapping of the gastric H,K-ATPase. Biochim. Biophys. Acta 1993; 1149: 151–165
  • Borjigin J., Nathans J. Insertional mutagenesis as a probe of rhodopsin's topography, stability and activity. J. Biol. Chem. 1994; 269: 14715–14722
  • Jewell E. A., Lingrel J. B. Site directed mutagenesis of the Na,K ATPase: Consequences of the subtitutions of negatively charged amino acids localized in the transmembrane domains. Biochemistry 1993; 32: 13523–13530
  • Feng J., Lingrel J. B. Analysis of amino acid residues in the H5-H6 transmembrane and extracellular domains of Na,K-ATPase α-subunit identifies theonine 797 as a determinant of ouabain sensitivity. Biochemistry 1994; 33: 4218–4224
  • Andersen J., Vilsen B. Structure-function relationships of cation translocation by Ca2+ and Na,K-ATPases studied by site directed mutagenesis. FEBS Letters 1995; 359: 101–106
  • Na S., Perlin D. S., Seto-Young D., Wang G., Haber J. E. Characterization of yeast plasma membrane H+-ATPase mutant pmal-A135V and its revertants. J. Biol. Chem. 1993; 268: 11792–11797
  • Cantley L. G., Zhou X. M., Cunha M. J., Epstein J., Cantley L. C. Ouabain-resistant transfectants of the murine ouabain resistance gene contain mutations in the α-subunit of the Na,K-ATPase. J. Biol. Chem. 1992; 267: 17271–17278
  • Besancon M., Shin J. M., Mercier F., Munson K., Miller M., Hersey S., Sachs G. Membrane topology and omeprazole labeling of the gastric H,K-adenosinetriphosphatase. Biochemistry 1993; 32: 2345–2355
  • Munson K. B., Balaji V. N., Ramnayaran K., Sachs G. Identification of an extracytoplasmic region of the H,K ATPase labelled by a K-competitive photoinhibitor. J. Biol. Chem. 1991; 266: 18976–18988
  • Lingrel J. B., Kuntzweiler T. Na+,K+-ATPase. J. Biol. Chem. 1994; 269: 19659–19662
  • Xie Y., Morimoto T. Four hydrophobic segments in the NH2-terminal third (H1-H4) of the Na,K-ATPase α-subunit alternately initiate and halt membrane translocation of the newly synthesized polypeptide. J. Biol. Chem. 1995; 270: 11985–11991
  • Xie Y., Lanhans-Ralasekaran S. A., Bellovino D., Morimito T. J. Only the first and the last hydrophobic segments in the COOH-terminal third of Na,K-ATPase α-subunit initiate and halt, respectively, membrane translocation of the newly synthesized polypeptide. Implications for the membrane topology. Biol. Chem. 1995; 271: 2563–2573
  • Smith D. L., Tao T., Maguire M. E. Membrane topology of a P-type ATPase. The MgtB magnesium transport protein of Salmonella typhimurium. J. Biol. Chem. 1993; 268: 22469–22479
  • Kim K., Jiang Q., Glashofer M., Yehle S., Wess J., Jacobson K. A. Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. Mol. Pharmacol. 1996; 49: 683–691
  • Liu J., Blin N., Conklin B. R., Wess J. Molecular mechanisms involved in muscarinic aetylcholine receptor-mediated G protein activation studied by insertion mutagenesis. J. Biol. Chem. 1996; 271: 6172–6178
  • Burstein E. S., Spalding T. A., Brann M. R. Amino acid side chains that define muscarinic receptor/G-protein coupling. Studies of the third intracellular loop. Biol. Chem. 1996; 271: 2882–2885
  • Dawson P. A., Oelkers P. Bile acid transporters. Curr. Opin. Lipidology 1995; 6: 109–114
  • Claros M. G., von Heijne G. TopPred II: an improtved software for membrane protein structure predictions. Comput. Appl. Biosci. 1994; 10: 685–686
  • Friedlander M., Blobel G. Bovine opsine has more than one signal sequence. Nature 1985; 318: 338–343
  • Schöneberg T., Liu J., Wess J. Plasma membrane localization and fonctionnal rescue of truncated forms of a G-protein coupled receptor. J. Biol. Chem. 1995; 270: 18000–18006
  • Schatz G., Dobberstein B. Common principles of proteine translocation across membranes. Science 1996; 271: 1519–1526
  • Audigier Y., Frielander M., Blobel G. Multiple topogenic sequences in bovine opsin. Proc. Nat. Acad. Sci. USA 1987; 84: 6780–6784
  • Wessels H. P., Spiess M. Insertion of a multispanning membrane protein occurs sequentially and requires only one signal sequence. Cell 1988; 55: 61–70
  • Seal A. J., Collingridge G. L., Hemley J. M. In vitro translation and membrane topology of the rat recombinant mGliR1α. Neuropharmarcology 1994; 33: 1065–1070
  • Gafvelin G., von Heijne G. Topological frustration in multispanning E. coli inner membrane proteins. Cell 1994; 77: 401–412
  • von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 1992; 225: 487–494
  • von Heijne G., Gavel Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 1988; 174: 671–678
  • Hartmann E., Rapoport T. A., Lodish H. F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. USA 1989; 86: 5786–5790
  • Kim H., Paul S., Jennity J., Inouye M. Reversible topology of a bifunctional transmembrane protein. Mol. Microbiol. 1994; 11: 819–831
  • Bamberg K., Sachs G. Topological analysis of the HK ATPase using in vitro translation. J. Biol. Chem. 1994; 269: 16909–16919
  • Brasseur R., Vanderbranden M., Cornet B., Burny A., Ruysschaert J. M. Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins. Biochim. Biophys. Acta 1990; 1029: 267–273
  • Fujii G., Horvath S., Woodward S., Eiserling F., Eisenberg D. A molecular model for membrane fusion based on solution studies of a amphiphilic peptide from HIVgp41. Protein Sci. 1992; 1: 1454–1464
  • Landolt-Marticorena C., Williams K. A., Deber C. M., Reithmeier R. A. Non-random distribution of amino acids in the transmembrane segment of human type I single span membrane proteins. J. Mol. Biol. 1993; 229: 602–608
  • High S., Marttoglio B., Gorlich D., Andersen S. S., Ashford A. J., Giner A., Hartmann E., Pehn S., Rapoport T. A., Dobberstein B., Brunner J. Site specific photodross-linking reveal that Sec61p and TRAM contact different regions of a membrane-inserted signal sequence. J. Biol. Chem. 1993; 268: 26745–26751
  • Do H., Falcone D., Lin J., Andrews D. W., Johnsom A. E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 1996; 85: 369–378
  • Simon S. M., Blobel G. Signal peptides open protein-conducting channel. Cell 1992; 69: 677–684
  • Merlie J. P., Fagan D., Mudd J., Needleman P. Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase). J. Biol. Chem. 1988; 263: 3550–3553
  • Picot D., Loo P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 1993; 367: 243–249
  • Bayle D., Weeks D., Sachs G. The membrane topology of the rat sarcoplasmic and endoplasmic reticulum calcium ATPases by in vitro translation scanning. J. Biol. Chem. 1995; 270: 25678–25684
  • Denzer A. J., Nabholz C. E., Spiess M. Transmembrane orientation of signal/anchor proteins is affected by the folding state but not the size of the N-terminal domain. EMBO J. 1995; 14: 6311–6317
  • Kanamaru T., Kashiwagi S., Mizuno T. A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Mol. Microbiol. 1994; 13: 369–377
  • Tsai K. J., Yoon K. P., Lynn A. R. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. J. Bacteriol. 1992; 174: 116–121
  • Melchers K., Weitzenegger T., Buhmann A., Steinhilber W., Sachs G., Schafer K. P. Cloning and membrane topology of a P type ATPase from Helicobacter pylori. J. Biol. Chem. 1996; 271: 446–457
  • Clarke D. M., Loo T. W., MacLennan D. H. The epitope for monoclonal antibody A20 (amino acids 870–890) is located on the luminal surface of the Ca22+-ATPase of sarcoplasmic reticulum. J Biol Chem 1990; 265: 17405–17408
  • Gunteski-Hamblin A. M., Greeb J., Shull G. E. A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J. Biol. Chem. 1988; 263: 15032–15040
  • Campbell A. M., Kessler P. D., Fambrough D. M. The alternative carboxyl termini of avian cardiac and brain sarcoplasmic reticulum/endoplasmic reticulum Ca2+-ATPases are on opposite sides of the membrane. J. Biol. Chem. 1992; 267: 9321–9325
  • Lin J., Addison R. A Novel integration signal that is composed of two transmembrane segments is required to integrate the Neurospora plasma membrane H+ ATPase into microsomes. J. Biol. Chem. 1995; 270: 6935–6941
  • Lin J., Addison R. The membrane topology of the carboxyl-terminal third of the Neurospora plasma membrane H+-ATPase. J. Biol. Chem. 1995; 270: 694–6948
  • Turk E., Kerner C. J., Lostao M. P., Wright E. M. Membrane topology of the human Na+/glucose cotransporter SGLT1. J. Biol. Chem. 1996; 271: 1925–1934
  • Hallen S., Bayle D., Dawson P. A., Sachs G. Membrane topology of the human ileal Na+ bile acid co-transporter by in vitro translation. scanning.
  • Oliver J., Jungnickel B., Gorlich D., Rapoport T. A., High S. The Sec61 complex is essential for the insertion of proteins into the membrane of the endoplasmic reticulum. FEBS Lett 1995; 362: 126–130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.