188
Views
78
CrossRef citations to date
0
Altmetric
Original Article

Minireview: Constitutively Active G Protein-Coupled Receptors: Potential Mechanisms of Receptor Activation

&
Pages 57-73 | Published online: 26 Jun 2009

References

  • Khorana H. G. Rhodopsin, photoreceptor of the rod cell. J. Biol. Chem. 1992; 267: 1–4
  • Savarese T. M., Fraser C. M. In vitro mutagenesis and the search for structure function relationships among G protein-coupled receptors. Biochem. J. 1992; 283: 1–19
  • Cotecchia S., Exum S., Caron M. G., Lefkowitz R. J. Regions of α1-adrenergic receptor involved in coupling to phosphatidyl-inositol hydrolysis and enhanced sensivity of biological function. Proc. Natl. Acad. Sci. USA 1990; 87: 2896–2900
  • Kjelsberg M. A., Cotecchia S., Ostrowski J., Caron M. G., Lefkowitz R. J. Constitutive activation of the α1B-adrenergic receptor by all amino acid substitution at a single site. J. Biol. Chem. 1992; 267: 1430–1433
  • Samama P., Cotecchia S., Costa T., Lefkowitz R. J. A mutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J. Biol. Chem. 1993; 268: 4625–4636
  • Ren Q., Kurose H., Lefkowitz R. J., Cotecchia S. Constitutively active mutants of the α2A-adrenergic receptor. J. Biol. Chem. 1993; 268: 16483–16487
  • Högger P., Shockley M. S., Lameh J., Sadee W. Activating mutations in N- and C-terminal 13 loop junctions of muscarinic acetylcholine Hm1 receptors. J. Biol. Chem. 1995; 270: 7405–7410
  • Boone C., Davis N. G., Sprague G. F., Jr. Mutations that alter the third cytoplasmatic loop of the a-factor receptor lead to constitutive and hypersensitive phenotype. Proc. Natl. Acad. Sci. USA 1993; 90: 9921–9258
  • Blüml K., Mutschler E., Wess J. Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors. J. Biol. Chem. 1994; 269: 18870–18876
  • Spalding T. A., Burstein E. S., Brauner-Osbourne H., Hill-Eubanks D., Brann M. R. Pharmacology of a constitutively active muscarinic receptor generated by random mutagenesis. J. Pharmacol. Exp. Ther. 1996; 275: 1274–1279
  • Nanevicz T., Wang L., Chen M., Ishii M., Coughlin S. R. Thrombin receptor activating mutations. J. Biol. Chem. 1996; 271: 702–706
  • Burstein E. S., Spalding T. A., Brann M. R. Constitutive activation of chimeric m2/m5 muscarinic receptors and dileneation of G-protein coupling selectivity domains. Biochem. Pharmacol. 1996; 51: 539–544
  • Perez D. M., Hwa J., Gaivin R., Mathur M., Brown F., Graham R. M. Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol. Pharmacol. 1996; 49: 112–122
  • Robinson P. R., Cohen G. B., Zhukovsky E. A., Oprian D. D. Constitutively active mutants of rhodopsin. Neuron 1992; 9: 719–725
  • Rao V. R., Cohen G. B., Oprian D. D. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 1994; 367: 639–642
  • Dryga T. P., Berson E. L., Rao V. R., Oprian D. D. Heterozygous missence mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nature Genet. 1993; 4: 280–283
  • Shenker A., Laue L., Kosugi S., Merenddino J. J., Jr, Minegishi T., Cutler G. B., Jr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993; 365: 652–654
  • Kosugi S., Van Dop C., Geffner M. E., Rabl W., Carel J. C., Chaussain J. L., Mori T., Merendino J. J., Jr, Shenker A. Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty. Hum. Mol. Genet. 1995; 4: 183–188
  • Parma J., Duprez L., Van Sande J., Cochaux P., Gervy C., Mockel J., Dumont J., Vassart G. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993; 365: 649–651
  • Parma J., Van Sande J., Swillens S., Tonacchera M., Dumont J., Vassart G. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyper-functioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca2+ cascades. Mol. Endocrinol. 1995; 9: 725–733
  • Duprez L., Parma J., Van Sande J., Allgeier A., Leclère J., Schvartz C., Delisle M.-J., Decoulx M., Orgiazzi J., Dumont J., Vassart G. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nature Genet. 1994; 7: 396–401
  • Paschke R., Tonacchera M., Van Sande J., Parma J., Vassart G. Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor in hyperfunctioning autonomous adenomas of the thyroid. J. Clin. Endocrinol. Meta. 1994; 79: 1785–1789
  • Robbins L. S., Nadeau J. H., Johnson K. R., Kelly M. A., Roselli-Rehfuss L., Baack E., Mountjoy K. G., Cone R. D. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 1993; 72: 827–34
  • Schipani E., Kruse K., Jüppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995; 268: 98–100
  • Del Castillo J., Katz B. Interaction at end-plate receptors between different choline derivates. Proc. R. Soc. Lond. B. Biol. Sci. 1957; 146: 369–381
  • DeLean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J. Biol. Chem. 1980; 268: 4625–4636
  • Tiberi M., Caron M. High agonist-independent activity is a distinguishing feature of the dopamine DIB receptor subtype. J. Biol. Chem. 1994; 269: 27295–27931
  • Cetani F., Tonacchera M., Vassart G. Differential effects of NaCl concentration on the constitutive activity of the thyrotropin and the luteinizing hormone/chorionic gonadotropin receptors. FEBS Lett. 1996; 378: 27–31
  • Costa T., Ogino Y., Munson P. J., Onaran H. O., Rodbard D. Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol. Pharmacol. 1992; 41: 549–560
  • Schütz W., Freissmuth M. Reverse intrinsic activity of antagonists on G protein-coupled receptors. Trends Pharmacol. Sci. 1992; 13: 376–380
  • Milligan G., Bond R. A., Lee M. Inverse agonism: pharmacological curiosity or potential therapeutic strategy?. Trends Pharmacol. Sci. 1995; 16: 10–13
  • Chidiac P., Hebert T. E., Valiquette M., Dennis M., Bouvier M. Inverse agonist activity of β-adrenergic antagonists. Mol. Pharmacol. 1994; 45: 490–499
  • Samama P., Pei G., Costa T., Coteccha S., Lefkowitz R. J. Negative Antagonists promote an inactive conformation of the β2-adrenergic receptor. Mol. Pharmacol. 1994; 45: 390–394
  • Barker E. L., Westphal R. S., Schmidt D., Sanders-Bush E. Constitutively active 5-hydroxytryptamine2c receptor reveal novel inverse agonist activity of receptor ligands. J. Biol. Chem. 1994; 269: 11687–11690
  • Leeb-Lundberg L. M. F., Mathis S. A., Herzig M. C. S. Antagonists of Bradykinin that stabilize a G-protein-uncoupled state of the B2 receptor act as inverse agonists in rat myometrial cells. J. Biol. Chem. 1994; 269: 25970–25973
  • Cohen G. B., Oprian D. D., Robinson P. R. Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. Biochemistry 1992; 31: 12592–12601
  • Arnis S., Fahmy K., Hofmann K. P., Sakmar T. P. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J. Biol. Chem. 1994; 269: 23879–23881
  • Farahbakhsh Z. T., Ridge K. D., Khorana H. G., Hubbell W. L. Mapping light-dependent structural changes in the cyto-plasmatic loop connecting helices C and D in rhodopsin: a site directed spin labeling study. Biochemistry 1995; 34: 8812–8819
  • Cohen G. B., Yang T., Robinson P. R., Oprian D. D. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Biochemistry 1993; 32: 6111–6115
  • Sakmar T. P., Franke R. R., Khorana H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 1989; 86: 8309–8313
  • Franke R. R., König B., Sakmar T. P., Khorana H. G., Hofmann K. P. Rhodopsin mutants that bind but fail to activate transducin. Science 1990; 250: 132–125
  • Scheer A., Fanelli F., Costa T., De Benedetti P. G., Cotecchia S. Constitutively active mutants of the α1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J.
  • Trumpp-Kallmeyer S., Hoflack J., Bruinvels A., Hibert M. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J. Med. Chem. 1992; 35: 3448–3462
  • Oliveira L., Paiva A. C. M., Sander C., Vriend G. A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol. Sci. 1994; 15: 170–172
  • Fanelli F., Menziani M. C, De Benedetti P. G. Computer simulations of signal transduction mechanism in α1B-adrenergic and m3-muscarinic receptors. Protein Eng., 8: 557–564
  • Baldwin J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993; 12: 1693–1703

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.