1,894
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Determination of the Whiteside line on femur surface models by fitting high-order polynomial functions to cross-section profiles of the intercondylar fossa

, , &
Pages 71-85 | Received 18 Oct 2010, Accepted 06 Jan 2011, Published online: 15 Feb 2011

References

  • Lee K, Goodman SB. Current state and future of joint replacements in the hip and knee. Expert Rev Med Devices 2008; 5(3)383–393
  • Siston RA, Giori NJ, Goodman SB, Delp S. Surgical navigation for total knee arthroplasty: A perspective. J Biomechanics 2007; 40: 728–735
  • Pearle AD, Kendoff D, Musahl V. Perspectives on computer-assisted orthopaedic surgery: Movement toward quantitative orthopaedic surgery. J Bone Joint Surg Am 2009; 91(Suppl 1)7–12
  • Stulberg SD, Loan P, Sarin V. Computer-assisted navigation in total knee replacement: Results of an initial experience in thirty-five patients. J Bone Joint Surg Am 2002; 84(2)90–98
  • Seon JK, Song EK. Navigation-assisted less invasive total knee arthroplasty compared with conventional total knee arthroplasty. A randomized prospective trial. J Arthroplasty 2006; 21(6)777–781
  • Davila JA, Kransdorf MJ, Duffy GP. Surgical planning of total hip arthroplasty: Accuracy of computer-assisted EndoMap software in predicting component size. Skeletal Radiol 2006; 35(6)390–393
  • Worz S, Rohr K. Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models. Med Image Anal 2006; 10: 41–58
  • Niu Q, Chi X, Leu MC, Ochoa J. Image processing, geometric modeling and data management for development of a virtual bone surgery system. Comput Aided Surg 2008; 13(1)30–40
  • Kao FC, Hsu KY, Tu YK, Chou MC. Surgical planning and procedures for difficult total knee arthroplasty. Orthopedics. 2009; 32(11)810
  • Subburaj K, Ravi B, Agarwal M. Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan images. Comput Med Imaging Graph 2009; 33(5)359–368
  • Suero EM, Hüfner T, Stübig T, Krettek C, Citak M. Use of a virtual 3D software for planning of tibial plateau fracture reconstruction. Injury 2010; 41(6)589–591
  • Baldwin MA, Langenderfer JE, Rullkoetter PJ, Laz PJ. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput Methods Programs Biomed 2010; 97(3)232–240
  • Cerveri P, Marchente M, Bartels W, Corten K, Simon JP, Manzotti A. Automated method for computing the morphological and clinical parameters of the proximal femur using heuristic modeling techniques. Ann Biomed Eng 2010; 38(5)1752–1766
  • Cerveri P, Marchente M, Bartels W, Corten K, Simon JP, Manzotti A. Towards automatic computer-aided knee surgery by innovative methods for processing the femur surface model. Int J Med Robotics Comput Assist Surg 2010; 6(3)350–361
  • Cerveri P, de Momi E, Marchente M, Baud-Bovy G, Scifo P, Barros RM, Ferrigno G. Method for the estimation of a double hinge kinematic model for the trapeziometacarpal joint using MR imaging. Comput Methods Biomech Biomed Eng 2010; 13(3)387–396
  • Jun Y, Choi K. Design of patient-specific hip implants based on the 3D geometry of the human femur. Advances in Engineering Software 2010; 41(4)537–547
  • Harrysson OL, Hosni YA, Nayfeh JF. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: Femoral-component case study. Musculoskelet Disord 2007; 13(8)91
  • Howell SM, Kuznik K, Hull ML, Siston RA. Results of an initial experience with custom-fit positioning total knee arthroplasty in a series of 48 patients. Orthopedics 2008; 31(9)857–863
  • Matthews F, Messmer P, Raikov V, Wanner GA, Jacob AL, Regazzoni P, Egli A. Patient-specific three-dimensional composite bone models for teaching and operation planning. J Digit Imaging 2009; 22(5)473–482
  • van Sint Jan S. Introducing anatomical and physiological accuracy in computerized anthropometry for increasing the clinical usefulness of modeling systems. Crit Rev Phys Rehabil Med 2005; 17(4)249–274
  • Yau WP, Leung A, Liu KG, Yan CH, Wong LL, Chiu KY. Interobserver and intra-observer errors in obtaining visually selected anatomical landmarks during registration process in non-image-based navigation-assisted total knee arthroplasty. J Arthroplasty 2007; 22(8)1150–1161
  • Taddei F, Ansaloni M, Testi D, Viceconti M. Virtual palpation of skeletal landmarks with multimodal display interfaces. Med Inform Internet Med 2007; 32(3)191–198
  • Whiteside LA, Arima J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthopedics 1995; 321: 168–172
  • Manili M, Muratori F, Fredella N. Whiteside line as the reliable surgical landmark for femoral rotation in total knee arthroplasty. Radiological validation. Eur J Orthop Surg Traumatol 2007; 17(6)599–602
  • Siston RA, Cromie MJ, Gold GE, Goodman SB, Delp SL, Maloney WJ, Giori NJ. Averaging different alignment axes improves femoral rotational alignment in computer-navigated total knee arthroplasty. J Bone Joint Surg Am 2008; 90(10)2098–2104
  • Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 1998, 356: 111–118
  • Blaha JD, Mancinelli CA, Simons WH. Using the transepicondylar axis to define the sagittal morphology of the distal part of the femur. J Bone Joint Surg Am 2002; 84: S48–S55
  • Luo C-F, Zeng B-F, Koshino T. Transepicondylar line and condylar line as parameters for axial alignment in knee arthroplasty. Knee 2004; 11(3)213–217
  • Siston RA, Patel JJ, Goodman SB, Delp SL, Giori NJ. The variability of femoral rotational alignment in total knee arthroplasty. J Bone Joint Surg Am 2005; 87: 2276–2280
  • Stoeckl B, Nogler M, Krismer M, Beimel C, de la Barrera JL, Kessler O. Reliability of the transepicondylar axis as an anatomical landmark in total knee arthroplasty. J Arthroplasty 2006; 21(6)878–882
  • van der Linden-van der Zwaag HM, Valstar ER, van der Molen AJ, Nelissen RG. Transepicondylar axis accuracy in computer assisted knee surgery: A comparison of the CT-based measured axis versus the CAS-determined axis. Comput Aided Surg 2008; 13(4)200–206
  • Picard F, Gregori A, Dean F, Mennessier A, Dillon J. Computer-assisted dynamic total knee arthroplasty using Whiteside's line for alignment. Orthopedics 2006; 19 (10 Suppl)S104–S107
  • Cerveri P, Pedotti A, Borghese NA. Combined evolution strategies for dynamic calibration of video-based measurement systems. IEEE Trans Evol Comput 2001; 5: 271–282
  • Shepstone L, Rogers J, Kirwan J, Silverman B. Shape of the intercondylar notch of the human femur: A comparison of osteoarthritic and non-osteoarthritic bones from a skeletal sample. Ann Rheum Dis 2001; 60(10)968–973
  • Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 1998, 356: 144–153
  • Akagi M, Matsusue Y, Mata T, Asada Y, Horiguchi M, Iida H, Nakamura T. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res 1999, 366: 155–163
  • Hanada H, Whiteside LA, Steiger J, Dyer P, Naito M. Bone landmarks are more reliable than tensioned gaps in TKA component alignment. Clin Orthop Relat Res 2007; 462: 137–142
  • Jenny JY, Boeri C. Low reproducibility of the intra-operative measurement of the transepicondylar axis during knee replacement. Acta Orthop Scand 2004; 75(1)74–77
  • Robinson M, Eckhoff DG, Reinig KD, Baugur MM, Bach JM. Variability of landmark identification in total knee arthroplasty. Clin Orthop Relat Res 2006; 442: 57–62
  • Middleton FR, Simon H, Palmer SH. How accurate is Whiteside's line as a reference axis in total knee arthroplasty?. Knee 2007; 14(3)204–220
  • Victor J, van Doninck D, Labey L, van Glabbeek F, Parizel P, Bellemans J. A common reference frame for describing rotation of the distal femur. A CT-based kinematic study using cadavers. J Bone Joint Surg Br 2009; 91-B(5)683–690
  • Nagamine R, Miura H, Inoue Y, Urabe K, Matsuda S, Okamoto Y, Nishizawa M, Iwamoto Y. Reliability of the anteroposterior axis and the posterior condylar axis for determining rotational alignment of the femoral component in total knee arthroplasty. J Orthop Sci 1998; 3(4)194–198
  • Kinzel V, Ledger M, Shakespeare D. Can the epicondylar axis be defined accurately in total knee arthroplasty?. Knee 2005; 12(4)293–296
  • Yan CH, Yau WP, Ng TP, Lie WH, Chiu KY, Tang WM. Inter- and intra-observer errors in identifying the transepicondylar axis and Whiteside's line. J Orthop Surg 2008; 16(3)316–320
  • Guy P, Krettek C, Mannss J, Whittall KP, Schandelmaier P, Tscherne H. CT-based analysis of the geometry of the distal femur. Injury 1998; 29(3)S-C16–S-C21
  • Eckhoff DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH, Flannery BS. Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J Bone Joint Surg Am 2005; 87A: 71–80
  • Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: The shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 2000; 82B: 1189–1195
  • Martelli S, Pinskerova V, Visani A. Anatomical investigations on the knee by means of computer-dissection. J Mech Med Biol 2006; 6: 55–73
  • Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg 1991; 73B: 709–714
  • Oswald MH, Jakob RP, Schneider E, Hoogewoud HM. Radiologic analysis of normal axial alignment of femur and tibia in view of total knee arthorplasty. J Arthroplasty 1993; 8(4)419–426
  • Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement: Its effect on survival. Clin Orthop Relat Res 1994, 299: 153–156
  • Dorr LD, Boiardo RA. Technical considerations in total knee arthroplasty. Clin Orthop Relat Res 1986, 205: 5–11
  • Li K, Tashman S, Fu F, Harner C, Zhang X. Automating analyses of the distal femur articular geometry based on three-dimensional surface data. Ann Biomed Eng 2010; 38(9)2928–2936
  • Victor J, van Doninck D, Labey L, Innocenti B, Parizel PM, Bellemans J. How precise can bony landmarks be determined on a CT scan of the knee?. Knee 2009; 16(5)358–365
  • Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty 2001; 16(4)493–497
  • Schmutz B, Reynolds KJ, Slavotinek JP. Development and validation of a generic 3D model of the distal femur. Comput Methods Biomech Biomed Eng 2006; 9: 305–312
  • Gelaude F, Vander Sloten J, Lauwers B. Accuracy assessment of CT-based outer surface femur meshes. Comput Aided Surg 2008; 3(4)188–199
  • Bryan R, Mohan PS, Hopkins A, Galloway F, Taylor M, Nair PB. Statistical modelling of the whole human femur incorporating geometric and material properties. Med Eng Phys 2010; 32(1)57–65
  • Laporte S, Skalli W, de Guise JA, Lavaste F, Mitton D. A biplanar reconstruction method based on 2D and 3D contours: Application to the distal femur. Comput Methods Biomech Biomed Eng 2003; 6(1)1–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.