749
Views
12
CrossRef citations to date
0
Altmetric
Research Article

3D XFEM-based modeling of retraction for preoperative image update

, , &
Pages 121-134 | Received 20 Jun 2010, Accepted 15 Feb 2011, Published online: 08 Apr 2011

References

  • Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS, Ferrant M, Warfield SK, Hata N, Schwartz RB, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 2001; 48(4)787–798
  • Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R. Intraoperative compensation for brain shift. Surgical Neurol 2001; 56(6)357–365
  • Paulsen KD, Miga MI, Kennedy FE, Hoopens PJ, Hartov A, Roberts DW. A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Trans Biomed Eng 1999; 46(2)213–225
  • Miga MI, Paulsen KD, Hoopes PJ, Kennedy FE, Hartov A, Roberts DW. In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery. IEEE Trans Biomed Eng 2000; 47(2)266–273
  • Hagemann A, Rohr K, Stiehl HS. Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM. Med Image Anal 2002; 6(4)375–388
  • Skrinjar O, Nabavi A, Duncan J. Model-driven brain shift compensation. Med Image Anal 2002; 6(4)361–373
  • Ferrant M, Nabavi A, Macq B, Kikinis R, Warfield SK. Serial registration of intra-operative MR images of the brain. Med Image Anal 2002; 6(4)337–359
  • Lunn KE, Paulsen KD, Roberts DW, Kennedy FE, Hartov A, West JD. Displacement estimation with co-registered ultrasound for image guided neurosurgery: A quantitative in vivo porcine study. IEEE Trans Med Imaging 2003; 22(11)1358–1368
  • Warfield SK, Haker SJ, Talos IF, Kemper CA, Weisenfeld N, Mewes AU, Goldberg-Zimring D, Zou KH, Westin CF, Wells WM, et al. Capturing intraoperative deformations: research experience at Brigham and Women's Hospital. Med Image Anal 2005; 9(2)145–162
  • Clatz O, Delingette H, Talos I-F, Golby AJ, Kikinis R, Jolesz FA, Ayache N, Warfield SK. Robust non-rigid registration to capture brain shift from intra-operative MRI. IEEE Trans Med Imaging 2005; 24(11)1417–1427
  • Wittek A, Miller K, Kikinis R, Warfield SK. Patient-specific model of brain deformation: Application to medical image registration. J Biomechanics 2007; 40(4)919–929
  • Songbai J, Hartov A, Robert D, Paulsen K. Data assimilation using a gradient descent method for estimation of intraoperative brain deformation. Med Image Anal 2009; 13(5)744–756
  • Kyriacou SK, Mohamed A, Miller K, Neff S. Brain mechanics for neurosurgery: Modeling issues. Biomechanics and Modeling in Mechanobiology 2002; 1(2)151–164
  • Cohen-Adad J, Paul P, Morandi X, Jannin P. Knowledge modeling in image guided neurosurgery: application in understanding intra-operative brain shift. In: Cleary KR, Galloway RL Jr. Proceedings of SPIE Medical Imaging 2006: Visualization, Image-Guided Procedures and Display, San Diego, CA, February 2006. Proc SPIE 2006;6141:709–716
  • Miller K, Wittek A, Joldes G, Horton A, Dutta-Roy T, Berger J, Morriss L. Modelling brain deformations for computer-integrated neurosurgery. Int J Numer Methods Biomed Eng 2009; 26(1)117–138
  • Nienhuys HW, van der Stappen FA. A surgery simulation supporting cuts and finite element deformation. In: Niessen WJ, Viergever MA, editors. Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2001), Utrecht, The Netherlands, October 2001. Lecture Notes in Computer Science 2208. Berlin: Springer; 2001. pp 153–160
  • Serby D, Harders M, Székely G. A new approach to cutting into finite element models. In: Niessen WJ and Viergever MA, editors. Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2001), Utrecht, The Netherlands, October 2001. Lecture Notes in Computer Science 2208. Berlin: Springer; 2001. pp 425–433
  • Steinemann D, Harders MA, Gross M, Székely G. Hybrid cutting of deformable solids. In: Proceedings of the IEEE Computer Society Conference on Virtual Reality. Alexandria, VA, March 2006. pp 35–42
  • Mor A, Kanade T. Modifying soft tissue models: Progressive cutting with minimal new element creation. In: Delp S, DiGioia AM, Jaramaz B, editors. Proceedings of the 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2000), Pittsburgh, PA, October 2000. Lecture Notes in Computer Science 1935. Berlin: Springer; 2000. pp 598–607
  • Ganovelli F, Cignoni P, Montani C, Scopigno R. A multiresolution model for soft objects supporting interactive cuts and lacerations. Computer Graphics Forum 2000; 19(3)271–282
  • Nienhuys HW. Cutting in deformable objects. PhD thesis, Institute for Information and Computing Sciences, University of Utrecht, The Netherlands, 2003
  • Bielser D, Glardon P, Teschner M, Gross MH. A state machine for real-time cutting of tetrahedral meshes. Graphical Models 2004; 66(6)398–417
  • Duflot M, Nguyen-Dang H. A meshless method with enriched weight functions for fatigue crack growth. Int J Numer Methods Eng 2004; 59: 1945–1961
  • Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng 1999; 46: 131–150
  • Abdelaziz Y, Hamouine A. A survey of the extended finite element. Computers and Structures 2008; 86(11–12)1141–1151
  • Vigneron LM, Duflot MP, Robe PA, Warfield SK, Verly JG. 2D XFEM-based modeling of retraction and successive resections for preoperative image update. Comput Aided Surg 2009; 14(1–3)1–20
  • Miga MI, Roberts DW, Kennedy FE, Platenik LA, Hartov A, Lunn KE, Paulsen KD. Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 2001; 49(1)75–84
  • Platenik LA, Miga MI, Roberts DW, Lunn KE, Kennedy FE, Hartov A, Paulsen KD. In vivo quantification of retraction deformation modeling for update image-guidance during neurosurgery. IEEE Trans Biomed Eng 2002; 49(8)823–835
  • Platenik LA, Miga MI, Roberts DW, Kennedy FE, Hartov A, Lunn KE, Paulsen KD. Comparison of an incremental versus single-step retraction model for intraoperative compensation. Proceedings of SPIE Medical Imaging 2001: Visualization, Image-Guided Procedures and Display, San Diego, CA, February 2001. Proc SPIE 2001;4319:358–365
  • Lamprich BK, Miga MI. Analysis of model-updated MR images to correct for brain deformation due to tissue retraction. Proceedings SPIE Medical Imaging 2003: Visualization, Image-Guided Procedures and Display, San Diego, CA, February 2003. Proc SPIE 2003;5029:552–560
  • Lunn KE, Paulsen KD, Roberts DW, Kennedy FE, Hartov A, Platenik LA. Nonrigid brain registration: synthesizing full volume deformation fields from model basis solutions constrained by partial volume intraoperative data. Computer Vision and Image Understanding 2003; 89: 299–317
  • Sun H, Kennedy FE, Carlson EJ, Hartov A, Roberts DW, Paulsen KD. Modeling of brain tissue retraction using intraoperative data. In: Barillot C, Haynor DR, Hellier P, editors. Proceedings of the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2004), Saint-Malo, France, September 2004. Part I. Lecture Notes in Computer Science 3216. Berlin: Springer; 2004. pp 225–233
  • Jerabkova L, Kuhlen T. Stable cutting of deformable objects in virtual environments using xfem. IEEE Computer Graphics and Applications 2009; 29(2)61–71
  • Zienkiewicz OC, Taylor RL. The Finite Element Method. Butterworth-Heinemann, Oxford 2000
  • Sukumar N, Prévost JH. Modeling quasi-static crack growth with the extended finite element method. Part I: Computer implementation. Int J Solids Structures 2003; 40(26)7513–7537
  • Dolbow JE. An extended finite element method with discontinuous enrichment for applied mechanics. PhD thesis, Northwestern University, Evanston, IL; 1999
  • Sukumar N, Moës N, Belytschko T, Moran B. Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 2000; 48(11)1549–1570
  • Felippa CA. Introduction to Finite Element Method, http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/
  • Vigneron LM, Boman RC, Ponthot J-P, Robe PA, Warfield SK, Verly JG. Enhanced FEM-based modeling of brain shift deformation in image-guided neurosurgery. J Comput Appl Math 2010; 234: 2046–2053
  • Geuzaine C, Remacle J-F. Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 2009; 79(11)1309–1331
  • Miller K, Wittek A. Neuroimage registration as displacement – zero traction problem of solid mechanics. Presentation at Workshop on Computational Biomechanics for Medicine at the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2006), Copenhagen, Denmark, October 2006
  • Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput Vision 1988; 1(4)321–331
  • Xu C, Pham DL, Prince JL. Medical image segmentation using deformable models. In: Sonka M, Fitzpatrick JM, editors. SPIE Handbook of Medical Imaging. Vol 2: Medical Image Processing and Analysis. SPIE; 2000. pp 129–174
  • Ferrant M. Physics-based deformable modeling of volumes and surfaces for medical image registration, segmentation and visualization. PhD thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium; 2001
  • Warfield SK, Talos F, Kemper C, Cosman E, Tei A, Ferrant M, Macq B, Wells WM, Black PM, Jolesz FA, Kikinis R. Augmenting intraoperative MRI with preoperative fMRI and DTI by biomechanical simulation of brain deformation. Proceedings of SPIE Medical Imaging 2003: Visualization, Image-Guided Procedures and Display, San Diego, CA, February 2003. Proc SPIE 2003;5029:79–86
  • Dubuisson M-P, Jain AK. A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, Jerusalem, Israel, October 1994. pp. 566–568

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.