Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 10, 2003 - Issue 2
159
Views
128
CrossRef citations to date
0
Altmetric
Original Article

Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit

Pages 67-79 | Received 27 Jan 2003, Accepted 14 Mar 2003, Published online: 06 Jul 2009

References

  • Sipe J D. Amyloidosis. Annu. Rev. Biochem. 1992; 61: 947–975
  • Sipe J D. Amyloidosis. Critical Reviews in Clinical Laboratory Sciences, J T Hindmarsh, D M Goldberg. CRC Press, Boca Raton 1994; Vol. 31: 325–354
  • Magnus J H, Stenstad T. Proteoglycans and the extracellular matrix in amyloidosis. Amyloid: Int J Exp Clin Invest 1997; 4: 121–134
  • Cohen A S. General introduction and a brief history of the amyloid fibril. Amyloidosis, J Marrink, M H Van Rijsijk. Nijhoff, Dordrecht 1986; 3–19
  • Virchow R. Zur cellulosefrage. Virchows Arch Patho Anat Physiol 1854; 6: 416–426
  • Friedteich N, Kekule A. Zur amyloifrage. Arch Pathol Physiol Klin Med. 1859; 16: 50–65
  • Sipe J D, Cohen A S. Review: History of the amyloid fibril. J Struct Biol 2000; 130: 88–98
  • Glenner G G, Page D L. Amyloid, amyloidosis, amyloidogenesis. Int Rev Exp Pathol 1976; 15: 1–92
  • Divry P, Florkin M. Sur les proprietes optiques de I'amyloide. CR Soc Biol 1927; 97: 1808–1810
  • Puchtler H, Waldrop F S, Meloan S N. A review of light, polarization and fluorescence microscopic method for amyloid. Appl Pathol 1985; 3: 5–17
  • Cohen A S, Shirahama T, Skinner M. Electron microscopy of amyloid. Electron Microscopy of Proteins, J R Harris. Academic Press, New York 1982; Vol. 3: 165–205
  • Serpell L C, Sunde M, Benson M D, Tennet G A, Pepys M B, Fraser P E. The protofilament substructure of amyloid fibrils. J Mol Biol 2000; 300: 1033–1039
  • Pras M, Schubert M, Zucker‐franklin D, Rimon A, Franklin E C. The characterization of soluble amyloid prepared in water. J Clin Invest 1968; 47: 924–933
  • Bonar L, Cohen A S, Skinner M M. Characterization of the amyloid fibrils as a cross‐beta protein. Proc Soc Exp Biol Med 1969; 131: 1373–1375
  • Glenner G G. Amyloid deposits and amyloidosis. The beta fibrilloses. N Engl J Med 1980; 302: 1283–1333
  • Cohen A S, Calkins E. Isolation of amyloid fibrils and study of effect of collagenase and hyaluronidase. J Cell Biol 1964; 21: 481–486
  • Shirahama T, Cohen A S. High resolution microscopic analysis of amyloid fibrils. J Cell Biol 1967; 33: 679–708
  • Selkoe D J, Abraham C R. Isolation of paired helical filaments and amyloid fibers from human brain. Methods in Enzymol 1986; 134: 388–404
  • Prusiner S B, DeArmond S J. Prion protein amyloid and neurodegeneration. Amyloid Int J Exp Clin Invest 1995; 2: 39–65
  • Glenner G G, Terry W, Harada M, Isersky C, Page D. Amyloid fibril proteins: Proof of homology with immunoglobulin light chains by sequence analysis. Science 1971; 172: 1150–1153
  • Benditt E P, Eriksen N, Hermodson M A, Ericsson L H. The major proteins of human and monkey amyloid substance: Common properties including unusual N‐terminal amino acid sequences. FEBS Lett 1971; 19: 169–173
  • Westermark P, Engstrom U, Johnson K H, Westermark G T, Betsholtz C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 1990; 87: 5036–5040
  • Westermark G T, Engstom U, Westermark P. The N‐terminal segment of protein AA determines its fibrillogenic property. Biochem Biophys Res Com 1992; 182: 27–33
  • Cohlberg J A, Li J, Uversky V N, Fink A L. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from α‐synuclein in vitro. Biochemistry 2002; 41: 1502–1511
  • Uversky V N, Li J, Souillac P, Millett I S, Doniach S, Jakes R, Goedert M, Fink A L. Biophysical properties of the synucleins and their propensities to fibrillate: Inhibition of α‐synuclein assembly by β‐synuclein and γ‐synuclein. J Biol Chem 2002; 277: 11970–11978
  • Jarrett J T, Lansbury P T. The carboxy terminus of the beta‐arnyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Cell 1993; 73: 1055–1058
  • Harper J D, Lansbury P T, Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: Mechnistic truths and physiological consequences of the time‐dependent solubility of amyloid proteins. Annu Rev Biochem 1997; 66: 385–407
  • Colon W, Kelly J W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 1992; 31: 8654–8660
  • Kelly J W. The alternative conformations of amyloidogenic proteins and their multi‐step assembly pathways. Curr Opin Struct Biol 1998; 8: 101–106
  • Naiki H, Hashimoto N, Suzuki S, Kimura H, Nakakuki K, Gejyo F. Amyloid Int J Exp Clin Invest 1997; 4: 223–232
  • McParland V J, Kad N M, Kalverda A P, Brown A, Kirvin‐Jones P, Hunter M G, Sundae M, Radford S E. Partially unfolded states of beta(2)‐microglobulin and amyloid formation in vitro. Biochemistry 2000; 39: 8735–8746
  • Rostagno A, Vidal R, Kaplan B, Chuba J, Kumar A, Elliot J I, Frangione B, Gallo G, Ghiso J. pH‐dependent fibrillogenesis of a VkappaIII Bence Jones protein. Br J Haematol 1999; 107: 835–843
  • Ionescu‐Zanetti C, Khurana R, Gillespie J R, Petrick J S, Trabachino L, Minert L J, Carter S A, Fink A L. Monitoring the assembly of Ig light‐chain amyloid fibrils by atomic force microscopy. Proc Natl Acad Sci USA 1999; 96: 13175–13179
  • Schultz R T, Pitha J. Relation of the hepatic and splenic microcirculations to the development of lesions in experimental amyloidosis. Am J Pathol 1985; 119: 127–137
  • Horiguchi Y, Fine J D, Leigh I M, Yoshiki T, Ueda M, Imamura S. Lamina densa malformation involved in histogenesis of primary localized cutaneous amyloidosis. J Invest Dermatol 1992; 99: 12–18
  • Yamaguchi H, Yamazaki T, Lemere C A, Frosch M P, Selkoe D J. Beta amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer's disease. An immunoelectron microscopic study. Am J Pathol 1992; 141: 249–259
  • Cathcart E S. Amyloidosis. Text Book of Rheumatology, W N Kelly, E D Harris, S Ruddy. WB Saunders, Philadelphia 1993
  • Ailles L, Kisilevsky R, Young I D. Induction of perlecan gene expression precedes amyloid formation during experimental murine AA amyloidosis. Lab Invest 1993; 69: 443–448
  • Woodrow S I, Stewart R J, Kisilevsky R, Gore J, Young I D. Experimental AA amyloidogenesis is associated with differential expression of extracellular matrix genes. Amyloid: Int J Exp Clin Invest 1999; 6: 22–30
  • Perlmutter L S. Microvascular pathology and vascular basement membrane components in Alzheimer's disease. Mol Neurobiol 1994; 9: 33–40
  • Farkas E, De Jong G I, de Vos R A, Jansen Steur E N, Luiten P G. Pathological features of cerebral cortical capillaries are doubled in Alzheimer's disease and Parkinson&ocar;s disease. Acta Neuropathol (Berl) 2000; 100: 395–402
  • Nelson S R, Hawkins P N, Richardson S, Lavender J P, Sethi D, Gower P E, Pugh C W, Winearls C G, Oliver D O, Pepys M B. Imaging of haemodialysis‐associated amyloidosis with 1231‐serum amyloid P component. Lancet 1991; 338: 335–339
  • Hawkins P N. Studies with radiolabelled serum amyloid P component provide evidence for turnover and regression of amyloid deposits in vivo. Clin Sci 1994; 87: 289–295
  • Inoue S, Kuroiwa M, Ohashi K, Hara M, Kisilevsky R. Ultrastructural organization of hemodialysis‐associated beta(2)‐microglobulin amyloid fibrils. Kidney Int 1997; 52: 1543–1549
  • Inoue S, Kuroiwa M, Saraiva M J, Guimaraes A, Kisilevsky R. Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: Examination with high‐resolution electron microscopy. J Struct Biol 1998; 124: 1–12
  • Inouc S, Kuroiwa M, Tan R, Kisilevsky R. A high resolution ultrastructural comparison of isolated and in situ murine amyloid fibrils. Amyloid Int J Exp Clin Invest 1998; 5: 99–110
  • Inoue S, Kuroiwa M, Kisilevsky R. Basement membrane, microfibrils and beta amyloid fibrillogenesis in Alzheimer's disease: High resilution ultrastructural findings. Brain Res Rev 1999; 29: 218–231
  • Zannis V I, Breslow J L. Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification. Biochemistry 1981; 20: 1033–1041
  • Saunders A M, Strittmatter W J, Schmechel D, George‐Hyslop P H, Pericak‐Vance M A, Joo S H, Rosi B L, Gusella J F, Crapper‐MacLachlan D R, Albert M J, et al. Association of apolipoprotein E allele epsilon 4 with late‐onset familial and sporadic Alzheimer's disease. Neurology 1993; 43: 1467–1472
  • Rebeck G W, Reiter J S, Strickland D K, Hyman B T. Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 1993; 11: 575–580
  • Schmechel D E, Saunders A M, Strittmatter W J, Crain B J, Hulette C M, Joo S H, Pericak‐Vance M A, Goldgaber D, Roses A D. Increased amyloid beta‐peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late‐onset Alzheimer's disease. Proc Natl Acad Sci USA 1993; 90: 9649–9653
  • Bales K R, Verina T, Dodel R C, Du Y, Altstiel L, Bender M, Hyslop P, Johnstone E M, Little S P, Cummins D J, Piccardo P, Ghetti B, Paul S M. Lack of apolipoprotcin E dramatically reduces amyloid beta‐peptide deposition. Nat Genet 1997; 17: 263–264
  • Holtzman D M, Bales K R, Tenkova T, Fagan A M, Parsadanian M, Sartorius L J, Mackey B, Olney J, McKeel D, Wozniak D, Paul S M. Apolipoprotein E isoform‐dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 2000; 97: 2892–2897
  • Hoshii Y, Kawano H, Cui D, Takeda T, Gondo T, Takahashi M, Kogishi K, Higuchi K, Ishihara T. Amyloid A protein amyloidosis induced in apolipoprotein E‐deficient mice. Am J Pathol 1997; 151: 911–917
  • Elliott‐Bryant R, Cathcart E S. Apolipoprotein E., and apolipoprotein A1 knock‐out mice readily develop amyloid A protein amyloidosis. Clin Immunol Immunopathol 1997; 85: 104–108
  • Togashi S, Lim S K, Kawano H, Ito S, Ishihara T, Okada T, Nakano S, Kinoshita T, Horie K, Episkopou V, Gottesman M E, Costantini F, Shimada K, Maeda S. Serum amyloid P component enhances induction of murine amyloidosis. Lab Invest 1997; 77: 525–531
  • Drory V E, Bimbaum M, Korczyn A D, Chapman J. Association of APOE epsilons allele with survival in arnyotrophic lateral sclerosis. J Neurol Sci 2001; 190: 17–20
  • Masterman T, Zhang Z, Hellgren D, Salter H, Anvret M, Lilius L, Lannfelt L, Hillert J. APOE genotypes and disease severity in multiple sclerosis. Mult Scler 2002; 8: 98–103
  • Haasdijk E D, Vlug A, Mulder M T, Jaarsma D. Increased apolipoprotein E expression correlates with the onset of neuronoal degeneration in the spinal cord of G93A‐SOD1 mice. Neurosci Lett 2002; 335: 29–33
  • Weisgraber K H. Apoliproprotein E:structure‐function relationships. Adv Protein Chem 1994; 45: 249–302
  • Weisgraber K H, Rall S C, Jr, Mahley R W, Milne R W, Marcel Y L, Sparrow J T. Human apolipoprotein E. Detcrmination of the heparin binding sites of apolipoprotein E3. J Biol Chem 1986; 261: 2068–2076
  • Hass G. Studies of amyloid II: The isolation of a polysaccharide from amyloid‐bearing tissues. Arch Pathology 1942; 34: 92–105
  • Bassiouni M. Studies of the acid polysaccharide of the white cells in rheumatic and other diseases showing its similarity to the acid polysaccharide of amyloid. Ann Rheum Dis 1955; 14: 288–292
  • Linker A, Hoffman P, Sampson P, Meyer K. Heparitin sulfate. Biochem Biophys acta 1958; 29: 443–444
  • Cohen A S. Preliminary chemical analysis of partially purified amyloid fibrils. Lab Invest 1966; 15: 66–83
  • Pras M, Nevo Z, Schubert M, Rotman J, Matalon R. The significance of mucopolysaccharides in amyloid. J Histochem Cytochem 1971; 19: 4430448
  • Razi N, Lindahl U. Biosynthesis of heparidheparan sulfate. The D‐glucosaminyl‐3‐O‐sulfotransferase reaction: target and inhibitor saccharides. J Biol Chem 1995; 270: 11267–11275
  • Salmivirta M, Lidholt K, Lindahl U. Heparan sulfate:a piece of information. FASEB J 1996; 10: 1270–1279
  • Jackson R L, Busch S J, Cardin A D. Glycosaminoglycans: Molecular properties, protein interactions, and role in physiological processes. Physiol Rev 1991; 71: 481–506
  • Esko J D, Selleck S B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002; 71: 435–471
  • Maccarana M, Sakura Y, Tawada A, Yoshida K, Lindahl U. Domain structure of heparan sulfate bovine organs. J Biol Chem 1996; 271: 17804–17810
  • Margolis R K, Salton S R, Magolis R U. Effects of nerve growth factor‐induced differentiation on the heparan sulfate of PC 12 pheochromocytoma cells and comparison with developing brain. Arch Biochem Biophys 1987; 257: 107–114
  • Steck P A, Moser R P, Bruner J M, Liang L, Freidman A N, Hwang T L, Yung W K. Altered expression and distribution of heparan sulfate proteoglycans in human gliomas. Cancer Res 1989; 49: 2096–2103
  • Feyzi E, Saldeen T, Larsson E, Lindahl U, Salmivirta M. Age‐dependent modulation of heparan sulfate structure and function. J Biol Chem 1998; 273: 13395–13398
  • Leveugle B, Fillit H. Proteoglycans and the acutephase response in Alzheimer's disease brain. Mol Neurobiol 1994; 9: 25–32
  • Leveugle B, Ding W, Buee L, Fillit H M. Interleukin‐1 and nerve growth factor induce hypersecretion and hypersulfation of neuroblastorna proteoglycans which bind beta‐amyloid. J Neuroimmunol 1995; 60: 151–160
  • Lyon A W, Anastassiades T, Kisilevsky R. In vivo analysis of murine serum sulfate metabolism ans splenic glycosaminoglycan biosynthesis during acute inflammation and amyloidosis. J Rheumatol 1993; 20: 1108–1113
  • Snow A D, Kisilevsky R. Temporal relationship between glycosaminoglycan accumulation and amyloid deposition during experimental amyloidosis. Lab Invest 1985; 53: 37–44
  • Snow A D, Willermer J, Kisilevsky R. A close ultrastructural relationship between sulfated proteoglycans and AA amyloid fibrils. Lab Invest 1987; 57: 687–698
  • Snow A D, Bramson R, Mar H, Wight T N, Kisilevsky R. A temporal and structural relationship between heparan sulfate proteoglycans and AA amyloid in experimental amyloidosis. J Histochem Cytochem 1991; 39: 1321–1330
  • Snow A D, Kisilevsky R, Stephens C, Anastassiades T. Characterization of tissue and plasma glycosaminoglycans during experimental AA amyloidosis and acute inflammation. Lab Invest 1987; 56: 665–675
  • Young I D, Willmer J P, Kisilevsky R. The ultra‐structural localization of sulfated proteoglycans is identical in the amyloids of Alzheimer's disease and AA, AL, senile cardiac and medullary carcinoma‐associated amyloidosis. Acta Neuropathol 1989; 78: 202–209
  • Magnus J H, Stenstad T, Kolset S O, Husby G. Glycosaminoglycans in extracts of cardiac amyloid fibrils from familial amyloid cardiomyapathy of danish origin related to variant transthyretin Met 111. Scand J Immunol 1991; 34: 63–69
  • van Duinen S G, Maat‐Schieman M L, Bruijn J A, Haan J, Roos R A. Cortical tissue of patients with hereditary cerebral hemorrhage with amyloidosis (dutch) contains various extracellular metrix deposits. Lab Invest 1995; 73: 183–189
  • Snow A D, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassel J, Wight T N. The presence of heparan sulfate in neuritic plaques and congophilic angiopathy in Alzheimer's disease. Am J Pathol 1988; 133: 456–463
  • Permutter L, Chui H, Saperia D, Athanikar J. Microangiopathy and the colocalization of heparan sulfate proteoglycan with amyloid in senile plaques of Alzheimer's disease. Brain Res 1990; 508: 13–19
  • Young I D, Ailles J, Narindrasorasak S, Tan R, Kisilevsky R. Localization of the basement membrane heparan sulfate proteoglycan in islet amyloid deposits in type II diabetes mellitus. Arch Pathol Lab Med 1992; 116: 951–954
  • Snow A D, Wight T N, Nochlin D, Koike Y, Kimata K, DeArmond S J, Prusiner S. Immunolocalization of heparan sulfate proteoglycans to the prion protein amyloid plaques of Gerstmann‐Straussler syndrome, Creutzfeldt‐Jakob disease and scrapies. Lab Invest 1990; 63: 601–611
  • McCubbin W D, Kay C M, Narindrasorasak S, Kisilevsky R. Circular dichroism and fluorescence studies on two murine serum amyloid A proteins. Biochem J 1988; 256: 775–783
  • De Beer M C, De Beer F C, McCubbin W D, Kay C M, Kindy M S. Structural prerequisites for serum amyloid A fibril formation. J Biol Chem 1993; 268: 20606–20612
  • Fraser P E, Nguyen J T, Chin D T, Kirchner D A. Effects of sulfate ions on Alzheimer β/A4 peptide assemblies: Implications for amyloid fibril‐proteoglycan interactions. J Neurochem 1992; 59: 1531–1540
  • McLaurin J, Franklin T, Zhang X, Deng J, Fraser P E. Interactions of Alzheimer amyloid‐0 peptides with glycosaminoglycans: Effects on fibril nucleation and growth. Eur J Biochem 1999; 266: 1101–1110
  • Castillo G M, Ngo C, Cummings J, Wight T N, Snow A D. Perlecan binds to the β‐amyloid proteins (Aβ) of Alzheimer's disease, accelerates Aβ fibril formation, and maintains Aβ fibril stability. J Neurochem 1997; 69: 2452–2465
  • Snow A D, Sekiguchi R, Nochlin D, Fraser P, Kimata K, Mizutani A, Arai M, Schreier W A, Morgan D G. An important role of heparan sulfate proteoglycan (perlecan) in a model system for the deposition and persistence of fibrillar A beta‐amyloid in rat brain. Neuron 1994; 12: 219–234
  • Kisilevsky R, Lemieux L J, Fraser P E, Kong X, Hultin P G, Szarek W A. Arresting amyloidosis in vivo using small‐molecule anionic sulphonates or sulphates: Implications for Alzheimer's disease. Nature Med 1995; 1: 143–148
  • Caughley B, Race R E. Potential inhibition of scrapie‐associated PrP accumulation by Congo red. J Neurochem 1992; 59: 768–771
  • Caspi S, Halimi M, Yanai A, Sasson S B, Taraboulos A, Gabizon R. The anti‐prion activity of Congo red. Putative mechanism. J Biol Chem 1998; 273: 3484–3489
  • Wong C, Xiong L ‐W, Horiuchi M, Raymond L, Wehrly K, Chesebro B, Caughey B. Sulfated glycans and elevated temperature stimulates PrPSc‐dependent cell‐free formation of protease‐resistant prion protein. EMBO J 2001; 20: 377–386
  • Castillo G M, Cummings J A, Yang W, Judge M E, Sheardown M J, Rimvall K, Hansen J B, Snow A D. Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan's enhancement of islet amyloid polypeptide (Amylin) fibril formation. Diabetes 1998; 47: 612–620
  • Cohlberg J A, Li J, Uversky V N, Fink A L. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from α‐synuclein in vitro. Biochemistry 2002; 41: 1502–1511
  • Goedert M, Jakes R, Spillantini M G, Hasegawa M, Smith M J, Crowther R A. Assembly of microtubule‐associated protein tau into Alzheimer‐like filaments induced by sulphated glycosaminoglycans. Nature 1996; 383: 550–553
  • Cardin A, Weintraub H JR. molecular modeling of protein‐glycosaminoglycan interactions. Atherosclerosis 1989; 9: 21–32
  • Sobel M, Soler D F, Kermode J C, Harris R B. Localization and characterization of a heparin binding domain peptide of human von Willebrand factor. J Biol Chem 1992; 267: 8857–8862
  • Narindrasorasak S, Lowery D, Gonzalez‐DeWhitt P, Poorman R A, Greenberg B, Kisilevsky R. High affinity interactions between the Alzheimer's beta‐amyloid precursor proteins and the basement membrane form of heparan sulfate proteoglycan. J Biol Chem 1991; 266: 12878–12883
  • Leveugle B, Scanameo A, Ding W, Fillit H. Binding of heparan sulfate glycosaminoglycan to beta‐amyloid peptide:Inhibition by potentially therapeutic polysulfated compounds. Neuroreport 1994; 5: 1389–1392
  • Brunden K R, Richter‐Cook N J, Chaturvedi N, Frederickson R C. pH‐dependent binding of synthetic beta‐amyloid peptides to glycosaminoglycans. J Neurochem 1993; 61: 2147–2154
  • Ancsin J B, Kisilevsky R. The hepariniheparan sulfate‐binding site on apo‐serum Amyloid A: Implications for the therapeutic intervention of amyloidosis. J Biol Chem 1999; 274: 7172–7181
  • Sun X J, Chang J Y. Heparin binding domain of human antithrombin III inferred from the sequential reduction of its three disulfide linkages. An efficient method for structural analysis of partially reduced proteins. J Biol Chem 1989; 264: 11288–11293
  • Loscalzo J, Melnick B, Handin R I. The interaction of platelet factor four and glycosaminoglycans. Arch Biochem Biophys 1985; 240: 446–455
  • Cardin A D, Hirose N, Blankenship D T, Jackson R L, Harmony J A, Sparrow D A, Sparrow J T. Binding of a high reactive heparin to human apolipoprotein E:identification of two heparin‐binding domains. Biochem Biophys Res Commun 1886; 134: 783–789
  • Baird A, Schubert D, Ling N, Guillemin R. Receptor‐ and heparin‐binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA 1988; 85: 2324–2328
  • Margalit H, Fischer N, Ben‐Sasson S A. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem 1993; 268: 19228–19231
  • Klunk W E, Pettegrew J W, Abraham D J. Quantitative evaluation of Congo red binding to amyloid‐like proteins with a beta‐pleated sheet conformation. J Histochem Cytochem 1989; 37: 1273–1281
  • Gabizon R, Meiner Z, Halimi M, Ben‐Sasson S A. Heparin‐like molecules bind differentially to prion‐proteins and change their intracellular metabolic fate. J Cell Physiol 1993; 157: 319–325
  • Caughey B, Brown K, Raymond G J, Katzenstein G E, Thresher W. Binding of the protease‐sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red. J Virol 1994; 68: 2135–2141
  • Pan T, Wong B ‐S, Li R, Petersen R B, Sy M ‐S. Cell‐surface prion protein interacts with glycosaminoglycans. Biochem J 2002; 368: 81–90
  • Warner R G, Hundt C, Weiss S, Turnbull J E. Identification of the heparan sulfate binding sites in the cellular prion protein. J Biol Chem 2002; 277: 18421–18430
  • Watson D J, Lander A D, Selkoe D J. Heparin‐binding properties of the amyloidogenic peptides Abeta and amylin. Dependence on aggregation state and inhibition by congo red. J Biol Chem 1997; 272: 31617–31624
  • Park K, Verchere C B. Identification of a heparin binding domain in the N‐terminal cleavage site of pro‐islet amyloid polypeptide: Implications for islet amyloid formation. J Biol Chem 2001; 276: 16611–16616
  • Jiang X, Myatt E, Lykos P, Stevens F J. Interaction between glycosaminoglycans and immunoglobulin light chains. Biochemistry 1997; 36: 13187–13194
  • Ohashi K, Kisilevsky R, Yanagishita M. Affinity of glycosaminoglycans with β‐2‐microglobulin. Nephron 2002; 90: 158–168
  • Heegaard N HH, Roepstorff P, Melberg S G, Nissen M H. Cleaved β‐2‐microglobulin partially attains a conformation that has amyloidogenic features. J Biol Chem 2002; 277: 11184–11189
  • Hasegawa M, Crowther R A, Jakes R, Goeder M. Alzheimer‐like changes in microtubule‐associated protein tau induced by sulfated glycosaminoglycans. J Biol Chem 1997; 272: 33118–33124
  • Perez M, Arrasate M, Montejo de Garcini E, Munoz V, Avila J. In vitro assembly of tau protein: mapping the regions involved in filament formation. Biochemistry 2001; 40: 5983–5991
  • Westermark P, Engstrom U, Westermark G T, Johnson K H, Permerth J, Betsholtz C. Islet amyloid polypeptide (IAPP) and pro‐IAPP immunoreactivity in human islets of Langerhans. Diabetes Res Clin Pract 1989; 7: 219–226
  • Creighton T E. Proteins; Structure and Molecular Properties. W.H. Freeman and Company, New York 1993; 4,231
  • Caldwell E EO, Nadkarni V D, Fromm J R, Linhardt R J, Weiler J M. Importance of specific amino acids in protein binding sites for heparin and heparan sulfate. Int J Biochem Cell Biol 1996; 28: 203–216
  • Mclaurin J, Fraser P E. Effect of amino‐acid substitutions on Alzheimer's amyloid‐β peptide‐glycosaminoglycan interactions. Eur J Biochem 2000; 267: 6353–6361
  • Ratnaswamy G, Koepf E, Bekele H, Yin H, Kelly J W. The amyloidogenicity of gelsolin is controlled by proteolysis and pH. Chem Biol 1999; 6: 293–304
  • Garcia‐Garcia M, Gouin‐Charnet A, Mourad G, Argiles A. monomeric and dimeric beta‐2‐microglobulin may be extracted from amyloid deposits in vitro. Nephrol Dial Transplant 1997; 12: 1192–1198
  • Yamaguchi I, Hasegawa K, Takahashi N, Gejyo F, Naiki H. Apolipoprotein E inhibits the depolymerization of Beta‐2‐microglobulin‐related amyloid fibrils at a neutral pH. Biochemistry 2001; 40: 8499–8507
  • Bame K J, Danda I, Hassall A, Tumova S. Aβ(1–40) prevents heparanase‐catalyzed degradation of heparan sulfate glycosaminoglycans and proteoglycans in vitro. J Biol Chem 1997; 272: 17005–17011
  • Murata K, Murata A, Yoshida K. Heparan sulfate isomers in cerebral arteries of Japanese women with aging and with atherosclerosis‐heparitinase and high performance liquid chromatography determinations. Atherosclerosis 1997; 132: 9–17
  • Ghiselli G, Lindahl U, Salmivirta M. foam cell conversion of macrophages alters the biosynthesis of heparan sulfate. Biochem Biophys Res Commun 1998; 247: 790–795
  • Conde‐Knape K. Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab Res Rev 2001; 17: 412–421
  • Sugahara K, Okumura Y, Yamashina I. The engelbreth‐holms‐swarm mouse tumor produces undersulfated heparan sulfate and oversulfated galactosaminoglycans. Biochem Biophys Res Commun 1989; 162: 189–197
  • Katoh‐Semba R, Oohira A, Kashiwamata S. Changes in glycosaminoglycans during the neuritogenesis in PC12 pheochromocytoma cells induced by nerve growth factor. J Neurochem 1990; 55: 1749–1757
  • Jayson G C, Lyon M, Paraskeva C, Tumbull J E, Deakin J A, Gallagher J T. Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J Biol Chem 1998; 273: 51–57
  • Lindahl B, Lindahl U. Amyloid‐specific heparan sulfate from human liver and spleen. J Biol Chem 1997; 272: 26091–26094
  • Lindahl B, Eriksson L, Lindahl U. Structure of heparan sulphate from human brain, with special regard to Alzheimer's disease. Biochem J 1995; 308: 177–184
  • Zebrower M, Beeber C, Kieras F J. Characterization of proteoglycans in Alzheimer's disease fibroblasts. Biochem Biophys Res Commun 1992; 184: 1293–1300
  • Zebrower M, Kieras F J. Are heparan sulphates (HS) sulphotransferases implicated in the pathogenesis of Alzheimer's disease. Glycobiology 1993; 3: 3–5
  • Westermark P, Eriksson L, Engstrom U, Enestrom S, Sletten K. Prolactin‐derived amyloid in the aging pituitary gland. Am J Pathol 1997; 150: 67–73
  • Ando Y, Nakamura M, Kai H, Katsuragi S, Terazaki H, Nozawa T, Okuda T, Misumi S, Matsunaga N, Hata K, Tajiri T, Shoji S, Yamashita T, Haraoka K, Obayashi K, Matsumoto K, Ando M, Uchino M. A novel localizated amyloidosis associated with lactoferrin in the cornea. Lab Invest 2002; 82: 757–766
  • Haggqvist B, Naslund J, Sletten K, Westermark G T, Mucchiano G, Tjernberg L O, Nordstedt C, Engstrom U, Westermark P. Medin: an integral fragment of aortic smooth muscle cell‐produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci 1999; 96: 8669–8674

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.