Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 18, 2011 - Issue 3
414
Views
31
CrossRef citations to date
0
Altmetric
Original Article

The generic amyloid formation inhibition effect of a designed small aromatic β-breaking peptide

, , &
Pages 119-127 | Received 06 Oct 2010, Accepted 18 Apr 2011, Published online: 09 Jun 2011

References

  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010;362:329–344.
  • Dobson CM. The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 2001;356:133–144.
  • Serpell LC. Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 2000;1:16–30.
  • Gazit E. The role of prefibrillar assemblies in the pathogenesis of amyloid diseases. Drugs Fut 2004;29:613–619.
  • Hoppener JW, Nieuwenhuis MG, Vroom TM, Ahren B, Lips CJ. Role of islet amyloid in type 2 diabetes mellitus: consequence or cause? Mol Cell Endocrinol 2002;197: 205–212.
  • Cascio M, Glazer PA, Wallace BA. The secondary structure of human amyloid deposits as determined by circular dichroism spectroscopy. Biochem Biophys Res Commun 1989;162:1162–1166.
  • Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 2000;9:1960–1967.
  • Blake CC, Serpell LC, Sunde M, Sandgren O, Lundgren E. A molecular model of the amyloid fibril. Ciba Found Symp 1996;199:6–15.
  • Sunde M, Blake CCF. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 1997;50:123–159.
  • Fandrich M, Fletcher MA, Dobson CM. Amyloid fibrils from muscle myoglobin. Nature 2001;410:165–166.
  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002;416:507–511.
  • Selkoe DJ. Folding proteins in fatal ways. Nature 2003;426:900–904.
  • Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006;27:570–575.
  • Frydman-Marom A, Rechter M, Shefler I, Bram Y, Shalev DE, Gazit E. Cognitive-performance recovery of Alzheimer’s disease model mice by modulation of early soluble amyloidal assemblies. Angew Chem Int Ed Engl 2009;48:1981–1986.
  • Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castaño EM, Frangione B. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 1998;4:822–826.
  • Gilead S,Gazit,E. Inhibition of amyloid fibril formation by peptide analogues modified with alpha-aminoisobutyric acid. Angew Chem Int Ed Engl 2004;43:4041–4044.
  • Gazit E. A possible role for π-stacking in self-assembly of amyloid fibrils. FASEB J 2002;16:77–83.
  • Pawar AP, Dubay KF, Zurdo J, Chiti F, Vendruscolo M, Dobson CM.Prediction of “aggregation-prone” and “aggregation susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol 2005;350:379–392.
  • Gazit E. Mechanistic studies of the process of amyloid fibrils formation by the use of peptide fragments and analogues: implications for the design of fibrillization inhibitors. Curr Med Chem 2002;9:1725–1735.
  • Porat Y, Mazor Y, Efrat S, Gazit E. Inhibition of Islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions. Biochemistry 2004;43:14454–14462.
  • Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LCM. Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci U S A 2005;102:315–320.
  • Inouye H, Sharma D, Goux WJ, Kirschner DA. Structure of core domain of fibril forming PHF/Tau fragments. Biophys J 2006;90:1774–1789.
  • Platt GW, Routledge KE, Homans SW, Radford SE. Fibril growth kinetics reveal a region of beta2-microglobulin important for nucleation and elongation of aggregation. J Mol Biol 2008;378:251–263.
  • Bastianetto S, Krantic S, Quirion R. Polyphenols as potential inhibitors of amyloid aggregation and toxicity: possible significance to Alzheimer’s disease. Mini Rev Med Chem 2008;8:429–435.
  • Lee VM. Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol Aging 2002;23:1039–1042.
  • Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 2006;67:27–37.
  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008;15:558–566.
  • Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A 1994;91:12243–12247.
  • Qin XY, Cheng Y, Cui J, Zhang Y, Yu LC. Potential protection of curcumin against amyloid beta-induced toxicity on cultured rat prefrontal cortical neurons. Neurosci Lett 2009;463:158–161.
  • Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE. Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol 2008;115:479–489.
  • Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 2007;53:135–160.
  • Rambold AS, Miesbauer M, Olschewski D, Seidel R, Riemer C, Smale L, Brumm L, Levy M, Gazit E, Oesterhelt D, et al. Green tea extracts interfere with the stress-protective activity of PrP and the formation of PrP. J Neurochem 2008;107:218–229.
  • Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996;55:259–272.
  • Reches M, Porat Y, Gazit E. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J Biol Chem 2002;277:35475–35480.
  • Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes 2004;53:1509–1516.
  • Westermark P, Engstrom U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci U S A 1990;87:5036–5040.
  • Sletten K, Westermark P, Natvig JB. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med 1976;143:993–998.
  • Volles MJ, Lansbury PT Jr. Relationships between the sequence of alpha-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol 2007;366:1510–1522.
  • Tsigelny IF, Bar-On P, Sharikov Y, Crews L, Hashimoto M, Miller MA, Keller SH, Platoshyn O, Yuan JX, Masliah E. Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein. FEBS J 2007;274:1862–1877.
  • Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med 2004;10 Suppl:S10–S17.
  • Porat Y, Stepensky A, Ding FX, Naider F, Gazit E. Completely different amyloidogenic potential of nearly identical peptide fragments. Biopolymers 2003;69:161–164.
  • Wiesehan K, Buder K, Linke RP, Patt S, Stoldt M, Unger E, Schmitt B, Bucci E, Willbold D. Selection of D-amino-acid peptides that bind to Alzheimer’s disease amyloid peptide abeta1-42 by mirror image phage display. Chembiochem 2003;4:748–753.
  • Chalifour RJ, McLaughlin RW, Lavoie L, Morissette C, Tremblay N, Boule M, Sarazin P, Stea D, Lacombe D, Tremblay P, et al. Stereoselective interactions of peptide inhibitors with the beta-amyloid peptide. J Biol Chem 2003;278:34874–34881.
  • Esteras-Chopo A, Morra G, Moroni E, Serrano L, Lopez de la Paz M, Colombo G. A molecular dynamics study of the interaction of D-peptide amyloid inhibitors with their target sequence reveals a potential inhibitory pharmacophore conformation. J Mol Biol 2008;383:266–280.
  • Karle IL, Balaram P. Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry 1990;29:6747–6756.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.