381
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Conventional and novel diagnostic biomarkers of acute myocardial infarction: a promising role for circulating microRNAs

, , , , &
Pages 547-558 | Received 23 Apr 2013, Accepted 06 Aug 2013, Published online: 11 Sep 2013

References

  • Adachi T, Nakanishi M, Otsuka Y, et al. (2010). Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 56:1183–5
  • Agewall S, Giannitsis E, Jernberg T, Katus H. (2011). Troponin elevation in coronary vs. non-coronary disease. Eur Heart J 32:404–11
  • Ai J, Zhang R, Li Y, et al. (2010). Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 39:73–7
  • Alexander KP, Newby LK, Armstrong PW, et al.; American Heart Association Council on Clinical Cardiology; Society of Geriatric Cardiology. (2007). Acute coronary care in the elderly, part II: ST-segment-elevation myocardial infarction: a scientific statement for healthcare professionals from the American Heart Association Council on Clinical Cardiology: in collaboration with the Society of Geriatric Cardiology. Circulation 115:2570–89
  • Alpert JS, Thygesen K, Antman E, Bassand JP. (2000). Myocardial infarction redefined – a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36:959–69
  • Ambros V. (2004). The functions of animal microRNAs. Nature 431:350–5
  • Apple FS, Collinson PO; IFCC Task Force on Clinical Applications of Cardiac Biomarkers. (2012). Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem 58:54–61
  • Apple FS, Jesse RL, Newby LK, et al.; National Academy of Clinical Biochemistry; IFCC Committee for Standardization of Markers of Cardiac Damage. (2007). National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: analytical issues for biochemical markers of acute coronary syndromes. Circulation 115:e352–5
  • Apple FS, Pearce LA, Smith SW, et al. (2009). Role of monitoring changes in sensitive cardiac troponin I assay results for early diagnosis of myocardial infarction and prediction of risk of adverse events. Clin Chem 55:930–7
  • Arroyo JD, Chevillet JR, Kroh EM, et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–8
  • Boon RA, Vickers KC. (2013). Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol 33:186–92
  • Brase JC, Johannes M, Schlomm T, et al. (2011). Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–16
  • Callis TE, Pandya K, Seok HY, et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–86
  • Carroll C, Al Khalaf M, Stevens JW, et al. (2013). Heart-type fatty acid binding protein as an early marker for myocardial infarction: systematic review and meta-analysis. Emerg Med J 30:280–6
  • Chan D, Ng LL. (2010). Biomarkers in acute myocardial infarction. BMC Med 8:34--44
  • Cheng Y, Tan N, Yang J, et al. (2010). A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond) 119:87–95
  • Cheng Y, Wang X, Yang J, et al. (2012). A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol 53:668–76
  • Christ M, Popp S, Pohlmann H, et al. (2010). Implementation of high sensitivity cardiac troponin T measurement in the emergency department. Am J Med 123:1134–42
  • Corsten MF, Dennert R, Jochems S, et al. (2010). Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506
  • D'Alessandra Y, Devanna P, Limana F, et al. (2010). Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–73
  • D'Alessandra Y, Pompilio G, Capogrossi MC. (2012). MicroRNAs and myocardial infarction. Curr Opin Cardiol 27:228–35
  • Daubert MA, Jeremias A. (2010). The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag 6:691–9
  • Davies RW, Dandona S, Stewart AF, et al. (2010). Improved prediction of cardiovascular disease based on a panel of single nucleotide polymorphisms identified through genome-wide association studies. Circ Cardiovasc Genet 3:468–74
  • de Lemos JA. (2013). Increasingly sensitive assays for cardiac troponins: a review. J Am Med Assoc 309:2262–9
  • de Planell-Saguer M, Rodicio MC. (2013). Detection methods for microRNAs in clinic practice. Clin Biochem 46:869–78
  • De Rosa S, Fichtlscherer S, Lehmann R, et al. (2011). Transcoronary concentration gradients of circulating microRNAs. Circulation 124:1936–44
  • Di Stefano V, Zaccagnini G, Capogrossi MC, Martelli F. (2011). microRNAs as peripheral blood biomarkers of cardiovascular disease. Vascul Pharmacol 55:111–18
  • Eggers KM, Lind L, Venge P, Lindahl B. (2009). Will the universal definition of myocardial infarction criteria result in an overdiagnosis of myocardial infarction? Am J Cardiol 103:588–91
  • Eggers KM, Venge P, Lindahl B. (2012). High-sensitive cardiac troponin T outperforms novel diagnostic biomarkers in patients with acute chest pain. Clin Chim Acta 413:1135–40
  • Frankenstein L, Wu AH, Hallermayer K, et al. (2011). Biological variation and reference change value of high-sensitivity troponin T in healthy individuals during short and intermediate follow-up periods. Clin Chem 57:1068–71
  • Frazier L, Johnson RL, Sparks E. (2005). Genomics and cardiovascular disease. J Nurs Scholarsh 37:315–21
  • Freda BJ, Tang WH, van Lente F, et al. (2002). Cardiac troponins in renal insufficiency: review and clinical implications. J Am Coll Cardiol 40:2065–71
  • Freund Y, Chenevier-Gobeaux C, Bonnet P, et al. (2011). High-sensitivity versus conventional troponin in the emergency department for the diagnosis of acute myocardial infarction. Crit Care 15:R147--55
  • Gidlöf O, Andersson P, van der Pals J, et al. (2011). Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118:217–26
  • Glatz JF, van Nieuwenhoven FA, Luiken JJ, et al. (1997). Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 57:373–8
  • Goch A, Misiewicz P, Rysz J, Banach M. (2009). The clinical manifestation of myocardial infarction in elderly patients. Clin Cardiol 32:E46–51
  • Hanke M, Hoefig K, Merz H, et al. (2010). A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28:655–61
  • Higgins JP, Higgins JA. (2003). Elevation of cardiac troponin I indicates more than myocardial ischemia. Clin Invest Med 26:133–47
  • Iribarren C, Phelps BH, Darbinian JA, et al. (2011). Circulating angiopoietins-1 and -2, angiopoietin receptor Tie-2 and vascular endothelial growth factor-A as biomarkers of acute myocardial infarction: a prospective nested case-control study. BMC Cardiovasc Disord 11:31--9
  • Itoi K, Jiang YQ, Iwasaki Y, Watson SJ. (2004). Regulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus. J Neuroendocrinol 16:348–55
  • Jaffe AS, Apple FS, Morrow DA, et al. (2010). Being rational about (im)precision: a statement from the Biochemistry Subcommittee of the Joint European Society of Cardiology/American College of Cardiology Foundation/American Heart Association/World Heart Federation Task Force for the definition of myocardial infarction. Clin Chem 56:941–3
  • Jaffe AS, Babuin L, Apple FS. (2006). Biomarkers in acute cardiac disease: the present and the future. J Am Coll Cardiol 48:1–11
  • Jiang L, Duan D, Shen Y, Li J. (2012). Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens Bioelectron 34:291–5
  • Kang K, Peng X, Luo J, Gou D. (2012). Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. J Anim Sci Biotechnol 3:4--12
  • Karakas M, Januzzi JL Jr, Meyer J, et al. (2011). Copeptin does not add diagnostic information to high-sensitivity troponin T in low- to intermediate-risk patients with acute chest pain: results from the rule out myocardial infarction by computed tomography (ROMICAT) study. Clin Chem 57:1137–45
  • Katus HA, Remppis A, Scheffold T, et al. (1991). Intra-cellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 67:1360–7
  • Keller T, Tzikas S, Zeller T, et al. (2010). Copeptin improves early diagnosis of acute myocardial infarction. J Am Coll Cardiol 55:2096–106
  • Keller T, Zeller T, Peetz D, et al. (2009). Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med 361:868–77
  • Khan SQ, Dhillon OS, O'Brien RJ, et al. (2007). C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation 115:2103–10
  • Kleine AH, Glatz JF, Van Nieuwenhoven FA, Van der Vusse GJ. (1992). Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cell Biochem 116:155–62
  • Korkmaz H, Saşak G, Celik A, et al. (2011). The comparison of cardiac biomarkers positivities in hemodialysis patients without acute coronary syndrome. Ren Fail 33:578–81
  • Kuwabara Y, Ono K, Horie T, et al. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4:446–54
  • Lackner KJ. (2013). Laboratory diagnostics of myocardial infarction – troponins and beyond. Clin Chem Lab Med 51:83–9
  • Latronico MV, Catalucci D, Condorelli G. (2007). Emerging role of microRNAs in cardiovascular biology. Circ Res 101:1225–36
  • Li C, Pei F, Zhu X, et al. (2012). Circulating microRNAs as novel and sensitive biomarkers of acute myocardial infarction. Clin Biochem 45:727–32
  • Liao J, Chan CP, Cheung YC, et al. (2009). Human heart-type fatty acid-binding protein for on-site diagnosis of early acute myocardial infarction. Int J Cardiol 133:420–3
  • Lippi G, Mattiuzzi C, Cervellin G. (2013). Circulating microRNAs (miRs) for diagnosing acute myocardial infarction: meta-analysis of available studies. Int J Cardiol 167:277–8
  • Lippi G, Mattiuzzi C, Cervellin G. (2013). Critical review and meta-analysis on the combination of heart-type fatty acid binding protein (H-FABP) and troponin for early diagnosis of acute myocardial infarction. Clin Biochem 46:26–30
  • Lippi G, Montagnana M, Salvagno GL, Guidi GC. (2006). Potential value for new diagnostic markers in the early recognition of acute coronary syndromes. CJEM 8:27–31
  • Long G, Wang F, Duan Q, et al. (2012). Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci 8:811–18
  • Lorenzen JM, Volkmann I, Fiedler J, et al. (2011). Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant 11:2221–7
  • Maouche S, Schunkert H. (2012). Strategies beyond genome-wide association studies for atherosclerosis. Arterioscler Thromb Vasc Biol 32:170–81
  • McMahon CG, Lamont JV, Curtin E, et al. (2012). Diagnostic accuracy of heart-type fatty acid-binding protein for the early diagnosis of acute myocardial infarction. Am J Emerg Med 30:267–74
  • Meder B, Keller A, Vogel B, et al. (2011). MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106:13–23
  • Meyer SU, Kaiser S, Wagner C, et al. (2012). Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs – a comparative study. PLoS One 7:e38946--58
  • Meyer SU, Pfaffl MW, Ulbrich SE. (2010). Normalization strategies for microRNA profiling experiments: a ‘normal' way to a hidden layer of complexity? Biotechnol Lett 32:1777–88
  • Mills NL, Churchhouse AM, Lee KK, et al. (2011). Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. J Am Med Assoc 305:1210–16
  • Mills NL, Lee KK, McAllister DA, et al. (2012). Implications of lowering threshold of plasma troponin concentration in diagnosis of myocardial infarction: cohort study. Br Med J 344:e1533--43
  • Mingels A, Jacobs L, Michielsen E, et al. (2009). Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem 55:101–8
  • Mishima Y, Stahlhut C, Giraldez AJ. (2007). miR-1-2 gets to the heart of the matter. Cell 129:247–9
  • Mo MH, Chen L, Fu Y, et al. (2012). Cell-free circulating miRNA biomarkers in cancer. J Cancer 3:432–48
  • Morgenthaler NG, Struck J, Alonso C, Bergmann A. (2006). Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52:112–19
  • Morrow DA, Cannon CP, Jesse RL, et al.; National Academy of Clinical Biochemistry. (2007). National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin Chem 53:552–74
  • Neal CS, Michael MZ, Pimlott LK, et al. (2011). Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dial Transplant 26:3794–802
  • O'Donnell CJ, Nabel EG. (2011). Genomics of cardiovascular disease. N Engl J Med 365:2098–109
  • Olivieri F, Antonicelli R, Capogrossi MC, Procopio AD. (2012a). Circulating microRNAs (miRs) for diagnosing acute myocardial infarction: an exciting challenge. Int J Cardiol Nov 26. [Epub ahead of print]
  • Olivieri F, Antonicelli R, Lorenzi M, et al. (2013). Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol 167:531–6
  • Olivieri F, Galeazzi R, Giavarina D, et al. (2012b). Aged-related increase of high sensitive Troponin T and its implication in acute myocardial infarction diagnosis of elderly patients. Mech Ageing Dev 133:300–5
  • Pan S, Nakayama T, Sato N, et al. (2013). A haplotype of the GOSR2 gene is associated with myocardial infarction in Japanese men. Genet Test Mol Biomarkers 17:481–8
  • Reichlin T, Hochholzer W, Bassetti S, et al. (2009a). Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 361:858–67
  • Reichlin T, Hochholzer W, Stelzig C, et al. (2009b). Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol 54:60–8
  • Reichlin T, Schindler C, Drexler B, et al. (2012). One-hour rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Arch Intern Med 172:1211–18
  • Reiter M, Twerenbold R, Reichlin T, et al. (2011). Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur Heart J 32:1379–89
  • Rich MW. (2006). Epidemiology, clinical features, and prognosis of acute myocardial infarction in the elderly. Am J Geriatr Cardiol 15:7–11
  • Roberts R, Stewart AF. (2012). Genes and coronary artery disease: where are we? J Am Coll Cardiol 60:1715–21.
  • Roger VL, Go AS, Lloyd-Jones DM, et al. (2011). Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation 123:e18–209
  • Salic K, De Windt LJ. (2012). MicroRNAs as biomarkers for myocardial infarction. Curr Atheroscler Rep 14:193–200
  • Savonitto S, Cavallini C, Petronio AS, et al. (2012). Early aggressive versus initially conservative treatment in elderly patients with non-ST-segment elevation acute coronary syndrome: a randomized controlled trial. JACC Cardiovasc Interv 5:906–16
  • Shieh JT, Huang Y, Gilmore J, Srivastava D. (2011). Elevated miR-499 levels blunt the cardiac stress response. PLoS One 6:e19481--92
  • Thum T, Mayr M. (2012). Review focus on the role of microRNA in cardiovascular biology and disease. Cardiovasc Res 93:543–4
  • Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. (2007). Universal definition of myocardial infarction. Eur Heart J 28:2525–38; Circulation 116:2634–53; J Am Coll Cardiol 50:2173–95
  • Thygesen K, Alpert JS, Jaffe AS, et al.; Task Force for the Universal Definition of Myocardial Infarction. (2012). Third universal definition of myocardial infarction. Nat Rev Cardiol 9:620–33
  • Tijsen AJ, Pinto YM, Creemers EE. (2012). Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 303:H1085–95
  • Torella D, Iaconetti C, Catalucci D, et al. (2011). MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 109:880–93
  • Turchinovich A, Weiz L, Burwinkel B. (2012). Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–5
  • Twerenbold R, Jaffe A, Reichlin T, et al. (2012). High-sensitive troponin T measurements: what do we gain and what are the challenges? Eur Heart J 33:579–86.
  • Vandesompele J, De Preter K, Pattyn F, et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34–46
  • van Rooij E, Quiat D, Johnson BA, et al. (2009). A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–73
  • van Rooij E, Sutherland LB, Qi X, et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–9
  • Wang G, Tam LS, Li EK, et al. (2010a). Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol 37:2516–22
  • Wang GK, Zhu JQ, Zhang JT, et al. (2010b). Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–66
  • Wang JX, Jiao JQ, Li Q, et al. (2011a). miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–8
  • Wang R, Li N, Zhang Y, et al. (2011b). Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Intern Med 50:1789–95
  • Wang Z, Luo X, Lu Y, Yang B. (2008). MiRNAs at the heart of the matter. J Mol Med (Berl) 86:771–83
  • Weber JA, Baxter DH, Zhang S, et al. (2010). The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–41
  • Welch TD, Yang EH, Reeder GS, Gersh BJ. (2012). Modern management of acute myocardial infarction. Curr Probl Cardiol 37:237–310
  • Widera C, Gupta SK, Lorenzen JM, et al. (2011). Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol 51:872–5
  • Yang B, Lin H, Xiao J, et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–91
  • Yeh RW, Sidney S, Chandra M, et al. (2010). Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med 362:2155–65
  • Zampetaki A, Willeit P, Tilling L, et al. (2012). Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 60:290–9
  • Ziebig R, Lun A, Hocher B, et al. (2003). Renal elimination of troponin T and troponin I. Clin Chem 49:1191–3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.