110
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Genetic variation in vitamin D receptor gene (Fok1:rs2228570) is associated with risk of coronary artery disease

, &
Pages 68-72 | Received 13 Jan 2015, Accepted 05 Nov 2015, Published online: 08 Dec 2015

References

  • Abu el Maaty MA, Gad MZ. (2013). Vitamin d deficiency and cardiovascular disease: potential mechanisms and novel perspectives. J Nutr Sci Vitaminol (Tokyo) 59:479–88
  • Abu el Maaty MA, Hanafi RS, Badawy SE, Gad MZ. (2013). Association of suboptimal 25-hydroxyvitamin D levels with knee osteoarthritis incidence in post-menopausal Egyptian women. Rheumatol Int 33:2903–7
  • Abu el Maaty MA, Hassanein SI, Sleem HM, Gad MZ. (2014). Effect of polymorphisms in the NADSYN1/DHCR7 Locus (rs12785878 and rs1790349) on plasma 25-hydroxyvitamin D levels and coronary artery disease incidence. J Nutrigenet Nutrigenomics 6:327–35
  • Abu el Maaty MA, Hanafi RS, Aboul-Enein HY, Gad MZ. (2015a). Design-of-experiment approach for HPLC analysis of 25-hydroxyvitamin D: a comparative assay with ELISA. J Chromatogr Sci 53:66–72
  • Abu el Maaty MA, Hassanein SI, Sleem HM, Gad MZ. (2015b). Vitamin D receptor gene polymorphisms (TaqI and ApaI) in relation to 25-hydroxyvitamin D levels and coronary artery disease incidence. J Recept Signal Transduct Res 35:391–5
  • Abu el Maaty MA, Hassanein SI, Hanafi RS, Gad MZ. (2013). Insights on vitamin D’s role in cardiovascular disease: investigating the association of 25-hydroxyvitamin D with the dimethylated arginines. J Nutr Sci Vitaminol (Tokyo) 59:172–7
  • Ahn J, Yu K, Stolzenberg-Solomon R, et al. (2010). Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 19:2739–45
  • Ames SK, Ellis KJ, Gunn SK, et al. (1999). Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children. J Bone Miner Res 14:740–6
  • Arai H, Miyamoto K, Taketani Y, et al. (1997). A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 12:915–21
  • Ban Y, Taniyama M, Yanagawa T, et al. (2001). Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population. BMC Med Genet 2:7
  • Bhanushali AA, Lajpal N, Kulkarni SS, et al. (2009). Frequency of FokI and taqI polymorphism of vitamin D receptor gene in Indian population and its association with 25-hydroxyvitamin D levels. Indian J Hum Genet 15:108–13
  • Body SC, Schwinn DA. (2008). Limitations of genetic findings that are not in Hardy-Weinberg equilibrium. Anesthesiology 108:338; author reply 338–9
  • Chen WY, Bertone-Johnson ER, Hunter DJ, et al. (2005). Associations between polymorphisms in the vitamin D receptor and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:2335–9
  • Colin EM, Weel AE, Uitterlinden AG, et al. (2000). Consequences of vitamin D receptor gene polymorphisms for growth inhibition of cultured human peripheral blood mononuclear cells by 1, 25-dihydroxyvitamin D3. Clin Endocrinol (Oxf) 52:211–6
  • Emam WA, Zidan HE, Abdulhalim BE, et al. (2014). Endothelial nitric oxide synthase polymorphisms and susceptibility to high-tension primary open-angle glaucoma in an Egyptian cohort. Mol Vis 20:804–11
  • Fan L, Tu X, Zhu Y, et al. (2005). Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol 20:249–55
  • Gross C, Krishnan AV, Malloy PJ, et al. (1998). The vitamin D receptor gene start codon polymorphism: a functional analysis of FokI variants. J Bone Miner Res 13:1691–9
  • Gyorffy B, Vasarhelyi B, Krikovszky D, et al. (2002). Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. Eur J Endocrinol 147:803–8
  • Habib Z. (1983). Haptoglobin polymorphism in Egyptians. Ann Hum Biol 10:385–7
  • Hassanein SI, Abu el Maaty MA, Sleem HM, Gad MZ. (2014). Triangular relationship between single nucleotide polymorphisms in the CYP2R1 gene (rs10741657 and rs12794714), 25-hydroxyvitamin d levels, and coronary artery disease incidence. Biomarkers 19:488–92
  • Hitchon CA, Sun Y, Robinson DB, et al. (2012). Vitamin D receptor polymorphism rs2228570 (Fok1) is associated with rheumatoid arthritis in North American natives. J Rheumatol 39:1792–7
  • Holick MF. (2007). Vitamin D deficiency. N Engl J Med 357:266–81
  • Hossein-Nezhad A, Eshaghi SM, Maghbooli Z, et al. (2014). The role of vitamin D deficiency and vitamin D receptor genotypes on the degree of collateralization in patients with suspected coronary artery disease. Biomed Res Int 2014:304250
  • Jorde R, Schirmer H, Wilsgaard T, et al. (2012). Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial infarction, diabetes, cancer and mortality. The Tromso Study. PLoS One 7:e37295
  • Jurutka PW, Remus LS, Whitfield GK, et al. (2000). The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 14:401–20
  • Kostner K, Denzer N, Muller CS, et al. (2009). The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. Anticancer Res 29:3511–36
  • Kuhn T, Kaaks R, Teucher B, et al. (2013). Plasma 25-hydroxyvitamin D and its genetic determinants in relation to incident myocardial infarction and stroke in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany Study. PLoS One 8:e69080
  • Li YC. (2011). Molecular mechanism of vitamin D in the cardiovascular system. J Investig Med 59:868–71
  • McGrath JJ, Saha S, Burne TH, Eyles DW. (2010). A systematic review of the association between common single nucleotide polymorphisms and 25-hydroxyvitamin D concentrations. J Steroid Biochem Mol Biol 121:471–7
  • Molinari C, Uberti F, Grossini E, et al. (2011). 25-dihydroxycholecalciferol induces nitric oxide production in cultured endothelial cells. Cell Physiol Biochem 27:661–8
  • Moon J, Yoon S, Kim E, et al. (2002). Lack of evidence for contribution of Glu298Asp (G894T) polymorphism of endothelial nitric oxide synthase gene to plasma nitric oxide levels. Thromb Res 107:129–34
  • Muscogiuri G, Sorice GP, Ajjan R, et al. (2012). Can vitamin D deficiency cause diabetes and cardiovascular diseases? Present evidence and future perspectives. Nutr Metab Cardiovasc Dis 22:81–7
  • Pan XM, Li DR, Yang L, et al. (2009). No association between vitamin D receptor polymorphisms and coronary artery disease in a Chinese population. DNA Cell Biol 28:521–5
  • Smolders J, Damoiseaux J, Menheere P, et al. (2009). Fok-I vitamin D receptor gene polymorphism (rs10735810) and vitamin D metabolism in multiple sclerosis. J Neuroimmunol 207:117–21
  • Stevenson JC. (2011). A woman’s journey through the reproductive, transitional and postmenopausal periods of life: impact on cardiovascular and musculo-skeletal risk and the role of estrogen replacement. Maturitas 70:197–205
  • Swapna N, Vamsi UM, Usha G, Padma T. (2011). Risk conferred by FokI polymorphism of vitamin D receptor (VDR) gene for essential hypertension. Indian J Hum Genet 17:201–6
  • Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. (2006). Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol 163:300–9
  • Uitterlinden AG, Fang Y, Van Meurs JB, et al. (2004). Genetics and biology of vitamin D receptor polymorphisms. Gene 338:143–56
  • Vaidya A, Sun B, Forman JP, et al. (2011). The Fok1 vitamin D receptor gene polymorphism is associated with plasma renin activity in Caucasians. Clin Endocrinol (Oxf) 74:783–90
  • Vogel A, Strassburg CP, Manns MP. (2002). Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology 35:126–31
  • Wang TJ, Zhang F, Richards JB, et al. (2010). Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376:180–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.