387
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Regulation of expression of microRNAs by DNA methylation in lung cancer

, &
Pages 589-599 | Received 27 Aug 2015, Accepted 13 Feb 2016, Published online: 27 Apr 2016

References

  • Azizi M, Teimoori-Toolabi L, Arzanani MK, et al. (2014). MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol Ther 15:419–27.
  • Banzhaf-Strathmann J, Edbauer D. (2014). Good guy or bad guy: the opposing roles of microRNA 125b in cancer. Cell Commun Signal 12:30.
  • Belinsky SA. (2015). Unmasking the lung cancer epigenome. Annu Rev Physiol 77:453–74.
  • Berger SL, Kouzarides T, Shiekhattar R, et al. (2009). An operational definition of epigenetics. Genes Dev 23:781–3.
  • Bhaskaran M, Wang Y, Zhang H, et al. (2009). MicroRNA-127 modulates fetal lung development. Physiol Genomics 37:268–78.
  • Brueckner B, Stresemann C, Kuner R, et al. (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–23.
  • Calin GA, Sevignani C, Dumitru CD, et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004.
  • Cao J, Song Y, Bi N, et al. (2013). DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer. Cancer Res 73:3326–35.
  • Chang TC, Wentzel EA, Kent OA, et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–52.
  • Chen X, Sun K, Jiao S, et al. (2014). High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep 4:7481.
  • Cheng Z, Ma R, Tan W, et al. (2014). MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp Mol Med 46:e112.
  • Conti L, Crisafulli L, Caldera V, et al. (2012). REST controls self-renewal and tumorigenic competence of human glioblastoma cells. PLoS One 7:e38486.
  • Crawford M, Brawner E, Batte K, et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun 373:607–12.
  • Cui EH, Li HJ, Hua F, et al. (2013). Serum microRNA-125b as a diagnostic or prognostic biomarker for advanced NSCLC patients receiving cisplatin-based chemotherapy. Acta Pharmacol Sin 34:309–13.
  • Dacic S, Kelly L, Shuai Y, et al. (2010). miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol 23:1577–82.
  • Dudziec E, Miah S, Choudhry HM, et al. (2011). Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res 17:1287–96.
  • Esteller M, Sanchez-Cespedes M, Rosell R, et al. (1999). Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 59:67–70.
  • Fitzmaurice C, Dicker D, Pain A, et al. (2015). The Global Burden of Cancer 2013. JAMA Oncol 1:505–27.
  • Forrest AR, Kanamori-Katayama M, Tomaru Y, et al. (2010). Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24:460–6.
  • Gallardo E, Navarro A, Vinolas N, et al. (2009). miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 30:1903–9.
  • Guo X, Xia J, Yan J. (2015). Promoter methylated microRNAs: potential therapeutic targets in gastric cancer. Mol Med Rep 11:759–65.
  • He L, Hannon GJ. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–31.
  • Heller G, Weinzierl M, Noll C, et al. (2012). Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clin Cancer Res 18:1619–29.
  • Hermeking H. (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–9.
  • Hildebrandt MA, Gu J, Lin J, et al. (2010). Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene 29:5724–8.
  • Ilan N, Elkin M, Vlodavsky I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–39.
  • Jiang Q, Feng MG, Mo YY. (2009). Systematic validation of predicted microRNAs for cyclin D1. BMC Cancer 9:194.
  • Kitano K, Watanabe K, Emoto N, et al. (2011). CpG island methylation of microRNAs is associated with tumor size and recurrence of non-small-cell lung cancer. Cancer Sci 102:2126–31.
  • Korpanty GJ, Graham DM, Vincent MD, Leighl NB. (2014). Biomarkers that currently affect clinical Practice in Lung Cancer: EGFR, ALK, MET, ROS-1, and KRAS. Front Oncol 4:204.
  • Kozaki K, Imoto I, Mogi S, et al. (2008). Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68:2094–105.
  • Kunej T, Godnic I, Ferdin J, et al. (2011). Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 717:77–84.
  • Lee HK, Finniss S, Cazacu S, et al. (2013). Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 4:346–61.
  • Lee K, Kunkeaw N, Jeon SH, et al. (2011). Precursor miR-886, a novel noncoding RNA repressed in cancer, associates with PKR and modulates its activity. RNA 17:1076–89.
  • Li J, Song Y, Wang Y, et al. (2013). MicroRNA-148a suppresses epithelial-to-mesenchymal transition by targeting ROCK1 in non-small cell lung cancer cells. Mol Cell Biochem 380:277–82.
  • Li N, Zhang F, Li S, et al. (2014). Epigenetic silencing of MicroRNA-503 regulates FANCA expression in non-small cell lung cancer cell. Biochem Biophys Res Commun 444:611–16.
  • Li X, Shen Y, Ichikawa H, et al. (2009). Regulation of miRNA expression by Src and contact normalization: effects on non-anchored cell growth and migration. Oncogene 28:4272–83.
  • Li XJ, Ren ZJ, Tang JH. (2014). MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis 5:e1327.
  • Li Y, Jiang Q, Xia N, et al. (2012). Decreased expression of microRNA-375 in non-small cell lung cancer and its clinical significance. J Int Med Res 40:1662–9.
  • Lin P-Y, Yu S-L, Yang P-C. (2010). MicroRNA in lung cancer. Br J Cancer 103:1144–8.
  • Liu B, Peng XC, Zheng XL, et al. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 66:169–75.
  • Liu H, Chen X, Gao W, et al. (2012). The expression of heparanase and microRNA-1258 in human non-small cell lung cancer. Tumour Biol 33:1327–34.
  • Liu X, Chen X, Yu X, et al. (2013). Regulation of microRNAs by epigenetics and their interplay involved in cancer. J Exp Clin Cancer Res 32:96.
  • Lodygin D, Tarasov V, Epanchintsev A, et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–600.
  • Lujambio A, Calin GA, Villanueva A, et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–61.
  • Lv L, Deng H, Li Y, et al. (2014). The DNA methylation-regulated miR-193a-3p dictates the multi-chemo-resistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell Death Dis 5:e1402.
  • Ma L, Young J, Prabhala H, et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–56.
  • Mathew CG. (2006). Fanconi anaemia genes and susceptibility to cancer. Oncogene 25:5875–84.
  • Mazar J, DeBlasio D, Govindarajan SS, et al. (2011). Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett 585:2467–76.
  • Meister J, Schmidt MH. (2010). miR-126 and miR-126*: new players in cancer. Sci World J 10:2090–100.
  • Muraoka T, Soh J, Toyooka S, et al. (2013). Impact of aberrant methylation of microRNA-9 family members on non-small cell lung cancers. Mol Clin Oncol 1:185–9.
  • Nadal E, Chen G, Gallegos M, et al. (2013). Epigenetic inactivation of microRNA-34b/c predicts poor disease-free survival in early-stage lung adenocarcinoma. Clin Cancer Res 19:6842–52.
  • Okada N, Lin C-P, Ribeiro MC, et al. (2014). A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 28:438–50.
  • Ovchinnikov DA, Cooper MA, Pandit P, et al. (2012). Tumor-suppressor gene promoter hypermethylation in saliva of head and neck cancer patients. Transl Oncol 5:321–6.
  • Pao W, Girard N. (2011). New driver mutations in non-small-cell lung cancer. Lancet Oncol 12:175–80.
  • Peng Y, Liu YM, Li LC, et al. (2014). MicroRNA-503 inhibits gastric cancer cell growth and epithelial-to-mesenchymal transition. Oncol Lett 7:1233–8.
  • Polo JM, Dell'oso T, Ranuncolo SM, et al. (2004). Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 10:1329–35.
  • Qiu T, Zhou L, Wang T, et al. (2013). miR-503 regulates the resistance of non-small cell lung cancer cells to cisplatin by targeting Bcl-2. Int J Mol Med 32:593–8.
  • Rakyan VK, Down TA, Thorne NP, et al. (2008). An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 18:1518–29.
  • Ramalingam SS, Owonikoko TK, Khuri FR. (2011). Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J Clin 61:91–112.
  • Rauhala HE, Jalava SE, Isotalo J, et al. (2010). miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer 127:1363–72.
  • Rykov SV, Khodyrev DS, Pronina IV, et al. (2013). Novel miRNA genes methylated in lung tumors. Genetika 49:896–901.
  • Shi Y, Liu C, Liu X, et al. (2014). The microRNA miR-34a inhibits non-small cell lung cancer (NSCLC) growth and the CD44hi stem-like NSCLC cells. PLoS One 9:e90022.
  • Silber J, Lim DA, Petritsch C, et al. (2008). miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14.
  • Stadler PF, Chen JJ, Hackermüller J, et al. (2009). Evolution of vault RNAs. Mol Biol Evol 26:1975–91.
  • Su Y, Wang Y, Zhou H, et al. (2014). MicroRNA-152 targets ADAM17 to suppress NSCLC progression. FEBS Lett 588:1983–8.
  • Sun Y, Luo Z-M, Guo X-M, et al. (2015). An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci 9:193.
  • Tan W, Gu J, Huang M, et al. (2015). Epigenetic analysis of microRNA genes in tumors from surgically resected lung cancer patients and association with survival. Mol Carcinog 54:E45–51.
  • Tanaka N, Toyooka S, Soh J, et al. (2012). Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer. Lung Cancer 76:32–8.
  • Wang LQ, Kwong YL, Kho CS, et al. (2013). Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia-implications on constitutive activation of NFκB pathway. Mol Cancer 12:173.
  • Wang Y, Tang Q, Li M, et al. (2014). MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun 444:199–204.
  • Wang Z, Chen Z, Gao Y, et al. (2011). DNA hypermethylation of microRNA-34b/c has prognostic value for stage I non-small cell lung cancer. Cancer Biol Ther 11:490–6.
  • Watanabe K, Emoto N, Hamano E, et al. (2012). Genome structure-based screening identified epigenetically silenced microRNA associated with invasiveness in non-small-cell lung cancer. Int J Cancer 130:2580–90.
  • Xi S, Xu H, Shan J, et al. (2013). Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest 123:1241–61.
  • Xia J, Guo X, Yan J, et al. (2014). The role of miR-148a in gastric cancer. J Cancer Res Clin Oncol 140:1451–6.
  • Xiao F, Zhang W, Chen L, et al. (2013). MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma. J Transl Med 11:195.
  • Xie B, Ding Q, Han H, et al. (2013). miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 29:638–44.
  • Xie YK, Huo SF, Zhang G, et al. (2012). CDA-2 induces cell differentiation through suppressing Twist/SLUG signaling via miR-124 in glioma. J Neurooncol 110:179–86.
  • Yan JW, Lin JS, He XX. (2014). The emerging role of miR-375 in cancer. Int J Cancer 135:1011–18.
  • Yanaihara N, Caplen N, Bowman E, et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–98.
  • Ying H, Kang Y, Zhang H, et al. (2015). MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J Immunol 194:1239–51.
  • Yoda S, Soejima K, Hamamoto J, et al. (2014). Claudin-1 is a novel target of miR-375 in non-small-cell lung cancer. Lung Cancer 85:366–72.
  • Yu T, Li J, Yan M, et al. (2015). MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway. Oncogene 34:413–23.
  • Yuxia M, Zhennan T, Wei Z. (2012). Circulating miR-125b is a novel biomarker for screening non-small-cell lung cancer and predicts poor prognosis. J Cancer Res Clin Oncol 138:2045–50.
  • Zhang L, Sullivan PS, Goodman JC, et al. (2011). MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71:645–54.
  • Zhang R, Li M, Zang W, et al. (2014). MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2. Tumour Biol 35:837–44.
  • Zhang W, Chan H, Wei L, et al. (2013). Overexpression of heparanase in ovarian cancer and its clinical significance. Oncol Rep 30:2279–87.
  • Zhang Y, Yan L-X, Wu Q-N, et al. (2011). miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 71:1–11.
  • Zhao JJ, Yang J, Lin J, et al. (2009). Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst 25:13–20.
  • Zheng X, Chopp M, Lu Y, et al. (2013). MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett 329:146–54.
  • Zhou B, Ma R, Si W, et al. (2013). MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett 333:159–69.
  • Zhou C, Qin Y, Xie Z, et al. (2015). NPTX1 is a novel epigenetic regulation gene and associated with prognosis in lung cancer. Biochem Biophys Res Commun 458:381–6.
  • Zhu X, Li Y, Shen H, et al. (2013). miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett 587:73–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.