67
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Association of CYBA G640A variation with coronary artery disease in Indians

, , &
Pages 708-715 | Received 23 Oct 2015, Accepted 13 Mar 2016, Published online: 21 Apr 2016

References

  • Adaikalakoteswari A, Balasubramanyam M, Rema M, Mohan V. (2006). Differential gene expression of NADPH oxidase (p22phox) and hemoxygenase-1 in patients with Type 2 diabetes and microangiopathy. Diabet Med 23:666–74.
  • Andresdottir M, Sigurdsson G, Sigvaldason H, Gudnason V. (2002). Fifteen percent of myocardial infarctions and coronary revascularizations explained by family history unrelated to conventional risk factors. The Reykjavik Cohort Study. Eur Heart J 23:1655–63.
  • Ascencio-Montiel I, Parra E, Valladares-Salgado A, et al. (2013). SOD2 gene Val16Ala polymorphism is associated with macroalbuminuria in Mexican Type 2 Diabetes patients: a comparative study and meta-analysis. BMC Med Genet 14:110.
  • Azumi H, Inoue N, Takeshita S, et al. (1999). Expression of NADH/NADPH Oxidase p22phox in Human Coronary Arteries. Circulation 100:1494–8.
  • Bachmann J, Willis B, Ayers C, et al. (2012). Association between family history and coronary heart disease death across long-term follow-up in men: the Cooper Center Longitudinal Study. Circulation 125:3092–8.
  • Baldus S, Heeschen C, Meinertz T, et al., CAPTURE Investigators (2003). Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108:1440–5.
  • Chang C, Gao B, Liu Z, et al. (2013). The myeloperoxidase -463G/A polymorphism and coronary artery disease risk: A meta-analysis of 1938 cases and 1990 controls. Clin Biochem 46:1644–8.
  • Després J, Lemieux I, Dagenais G, et al. (2000). HDL-cholesterol as a marker of coronary heart disease risk: the Québec cardiovascular study. Atherosclerosis 153:263–72.
  • dos Santos K, Canani L, Gross J, et al. (2006). The catalase -262C/T promoter polymorphism and diabetic complications in Caucasians with type 2 diabetes. Dis Markers 22:355–9.
  • Forsberg L, Lyrenas L, Morgenstern R, de Faire U. (2001). A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med 30:500–5.
  • Galecki P, Szemraj J, Zboralski K, et al. (2009). Relation between functional polymorphism of catalase gene (-262C>T) and recurrent depressive disorder. Neuro Endocrinol Lett 30:357–62.
  • Gardemann A, Mages P, Katz N, et al. (1999). The p22 phox A640G gene polymorphism but not the C242T gene variation is associated with coronary heart disease in younger individuals. Atherosclerosis 145:315–23.
  • Gururajan P, Gurumurthy P, Nayar P, et al. (2009). Serum myeloperoxidase: a novel biomarker for evaluation of patients with acute coronary syndrome. Heart Asia 1:41–6.
  • Guzik T, West N, Black E, et al. (2010). Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 102:1744–7.
  • Heslop C, Tebbutt S, Podder M, et al. (2012). Combined polymorphisms in oxidative stress genes predict coronary artery disease and oxidative stress in coronary angiography patients. Ann Hum Genet 76:435–47.
  • Ho E, Karimi-Galougahi K, Liu C, et al. (2013). Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol 1:483–91.
  • Inoue N, Kawashima S, Kanazawa K, et al. (1998). Polymorphism of the NADH/NADPH Oxidase p22 phox gene in patients with coronary artery disease. Circulation 97:135–7.
  • Jones D, Prior S, Tang T, et al. (2010). Association between the rs4880 superoxide dismutase 2 (C>T) gene variant and coronary heart disease in diabetes mellitus. Diabetes Res Clin Pract 90:196–201.
  • Katakami N, Kaneto H, Matsuoka T, et al. (2010). Accumulation of gene polymorphisms related to oxidative stress is associated with myocardial infarction in Japanese type 2 diabetic patients. Atherosclerosis 212:534–8.
  • Letonja M, Nikolajević-Starčević J, Batista C, et al. (2011). Association of the C242T polymorphism in the NADPH oxidase p22 phox gene with carotid atherosclerosis in Slovenian patients with type 2 diabetes. Mol Biol Rep 39:10121–30.
  • Liu C, Rennie W, Carmack C, et al. (2014). Effects of genetic variations on microRNA: target interactions. Nucleic Acids Res 42:9543–52.
  • Macías-Reyes A, Rodríguez-Esparragón F, Caballero-Hidalgo A, et al. (2008). Insight into the role of CYBA A640G and C242T gene variants and coronary heart disease risk. A case-control study. Free Radic Res 42:82–92.
  • Madamanchi N, Tchivilev I, Runge M. (2006). Genetic markers of oxidative stress and coronary atherosclerosis. Curr Atheroscler Rep 8:177–83.
  • Maiolino G, Rossitto G, Caielli P, et al. (2013). The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators Inflamm 2013:1–13.
  • Mandsorwale D, Nagtilak S, Lalchandani A, Srivastava A. (2014). Role of-463 G/A genetic polymorphism & myeloperoxidase activity in prediction of cardiovascular disease. Sch J App Med Sci 2:1402–7.
  • Martin R, Li Y, Liu Q, et al. (2009). Manganese superoxide dismutase V16A single-nucleotide polymorphism in the mitochondrial targeting sequence is associated with reduced enzymatic activity in cryopreserved human hepatocytes. DNA Cell Biol 28:3–7.
  • Miller S, Dykes D, Polesky H. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res16:1215.
  • Narne P, Ponnaluri K, Siraj M, Ishaq M. (2014). Polymorphisms in oxidative stress pathway genes and risk of diabetic nephropathy in South Indian type 2 diabetic patients. Nephrology (Carlton) 19:623–9.
  • Navab M, Ananthramaiah G, Reddy S, et al. (2004). The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 45:993–1007.
  • Niemiec P, Nowak T, Balcerzyk A, et al. (2011). The CYBA gene A640G polymorphism influences predispositions to coronary artery disease through interactions with cigarette smoking and hypercholesterolemia. Biomarkers 16:405–12.
  • Nikpoor B, Turecki G, Fournier C, et al. (2001). A functional myeloperoxidase polymorphic variant is associated with coronary artery disease in French-Canadians. Am Heart J 142:336–9.
  • O'donnell C, Elosua R. (2008). Cardiovascular risk factors. Insights from Framingham Heart Study. Rev Esp Cardiol 61:299–310.
  • Orosz Z, Csiszar A, Labinskyy N, et al. (2007). Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: role of NAD(P)H oxidase activation. Am J Physiol Heart Circ Physiol 292:H130–9.
  • Panwar R, Gupta R, Gupta B, et al. (2011). Atherothrombotic risk factors & amp; premature coronary heart disease in India: a case-control study. Indian J Med Res 134:26–32.
  • Patel H, Kalia K. (2013). Polymorphisms in Mn-SOD and EC-SOD gene and risk of nephropathy in Western Indian Type 2 diabetic patients. Int J Diabetes Dev Ctries 33:229–35.
  • Peluso I, Morabito G, Urban L, et al. (2012). Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets 12:351–60.
  • Reynolds W, Sermet-Gaudelus I, Gausson V, et al. (2006). Myeloperoxidase promoter polymorphism -463G is associated with more severe clinical expression of cystic fibrosis pulmonary disease. Mediators Inflamm 2006:36735.
  • Scanlon P, Faxon D, Audet A Jr., et al. (1999). ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33:1756–824.
  • Scheuner M. (2003). Genetic evaluation for coronary artery disease. Genet Med 5:269–85.
  • Schirmer M, Hoffmann M, Kaya E, et al. (2008). Genetic polymorphisms of NAD(P)H oxidase: variation in subunit expression and enzyme activity. Pharmacogenomics J 8:297–304.
  • Shea S, Ottman R, Gabrieli C, et al. (1984). Family history as an independent risk factor for coronary artery disease. J Am Coll Cardiol 4:793–801.
  • Sianos G, Morel M, Kappetein A, et al. (2005). The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 1:219–27.
  • Sies H. (1997). Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–5.
  • Sivapalaratnam S, Boekholdt S, Trip M, et al. (2010). Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study. Heart 96:1985–9.
  • Stocker R, Keaney J. Jr. (2004). Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–478.
  • Tang N, Wang Y, Mei Q. (2013). Myeloperoxidase G-463A polymorphism and susceptibility to coronary artery disease: a meta-analysis. Gene 523:152–7.
  • Tiwari A, Prasad P, Thelma B, et al. (2009). Oxidative stress pathway genes and chronic renal insufficiency in Asian Indians with Type 2 diabetes. J Diabetes Complications 23:102–11.
  • Ushio-Fukai M, Zafari A, Fukui T, et al. (1996). p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271:23317–21.
  • Vats P, Chandra H, Banerjee M. (2013). Glutathione S-transferase and catalase gene polymorphisms with type 2 diabetes mellitus. Dis Mol Med 1:46–53.
  • Vogiatzi G, Tousoulis D, Stefanadis C. (2009). The role of oxidative stress in atherosclerosis. Hellenic J Cardiol 50:402–9.
  • Xu Q, Yuan F, Shen X, et al. (2014). Polymorphisms of C242T and A640G in CYBA gene and the risk of coronary artery disease: a meta-analysis. PLoS One 9:84251.
  • Zhang R, Brennan M, Fu X, et al. (2001). Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 286:2136–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.