3
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Glia: The not so innocent bystanders

, &
Pages 234-239 | Received 15 Feb 1996, Accepted 22 Apr 1996, Published online: 10 Jul 2009

References

  • Ankarcrona M, Bypbukt J M, Bontoco E, Zhivotovsky B, Orrenlus S, Lipton S A, Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15: 1–20
  • Beckman J S, Beckman T W, Chen J, Marshal P A, Freeman B D. Apparent hydroxyl radical production by peroxinitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620–1624
  • Bernton E W, Bryant H U, Decoster M A, Orenstein J M, Ribas J L, Meltzer M S, Gendelman H E. No direct neurotoxicity by HIV-1 virons or culture fluids from HIV-1 infected T cells or monocytes. AIDS Res Human Retroviruses 1992; 8: 495–503
  • Bito H, Nakamura M, Honda Z, Isumi T, Iwatsubo T, Seyama T, Segura A, Kido Y, Shimizu T. Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuron 1992; 9: 285–294
  • Boje K M, Arora P K. Microglia-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell deadi. Brain Res 1992; 587: 250–256
  • Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton S A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-mediyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 1995; 92: 7162–7166
  • Bukrinsky M I, Nottet H SLM, Schmidtmayerova H, Dubrovsky L, Flanagan C R, Mullins M E, Lipton S A, Gendelman H E. Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HTV-l)-infected monocytes: implications for HTV-associated neurologic disease. J Exp Med 1994; 181: 735–745
  • Chao C C, Hu S, Molitor T W, Shaskan E G, Peterson P K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992a; 149: 2736–2741
  • Chao C C, Hu S, Tsang M, Weauierbee J, Molitor T W, Anderson W R, Peterson P K. Effects of transforming growth factor-β on murine astrocyte glutamine synthetase activity: Implications in neuronal injury. J Clin Invest 1992b; 90: 1786–1793
  • Chao C C, Molitor T W, Hu S. Neuroprotective role of IL-4 against activated microglia. J Immunol 1993; 151: 1473–1481
  • Chao C C, Hu S. Tumor necrosis factor-α potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci 1994; 16: 172–179
  • Chao C C, Gekker G, Hu S, Peterson P K. Human microglial cell defense against Toxoplasma gondii: the role of cytokines. J Immunol 1994a; 152: 1246–1252
  • Chao C C, Hu S, Kravitz F H, Tsang M, Anderson W R, Peterson P K. Transforming growth factor-β protects human neurons against β-amyloid-induced injury. Molec Chem Neuropathol 1994b; 23: 159–178
  • Chao C C, Hu S, Sheng W S, Peterson P K. Tumor necrosis factor-alpha production by human fetal microglial cells: regulation by other cytokines. Dev Neurosci 1995a; 17: 97–105
  • Chao C C, Hu S, Sheng W S, Tsang M, Peterson P K. Tumor necrosis factor-a mediates the release of bioactive transforming growth factor-β in microglial cell cultures. Clin Immunol Immunopathol 1995b; 77: 358–365
  • Chao C C, Hu S, Peterson P K. Modulation of human microglial cell superoxide production by cytokines. J Leukocyte Biol 1995c; 58: 65–70
  • Chao C C, Hu S, Erhlich L, Peterson P K. Interleukin-1 and tumor necrosis factor-a synergistically mediate neurotoxicity: involvement of nitric oxide and N-methyl-D-aspartate receptors. Brain Behav Immun 1995d; 9: 355–365
  • Chao C C, Hu S, Sheng W S, Bu D-F, Bukrinsky M I, Peterson P K. Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism. Glia 1996; 16: 276–284
  • Clark G D, Happel L T, Zorumski G F, Bazan N G. Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron 1992; 9: 1211–1216
  • Colton C A, Yao J, Keri J E, Gilbert D. Regulation of microglial function by interferons. J Neuroimmunol 1992; 30: 89–98
  • Constam D B, Phillip J, Malipiero U V, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-β1, β2, and β3 by glioblastoma cells, astrocytes, and microglia. J Immunol 1992; 148: 1404–1410
  • da Cunha A, Vitkovic L. Transforming growth factor beta-1 (TGF-β1) expression regulation in rat cortical astrocytes. J Neuroimmunol 1992; 36: 157–169
  • Dawson V L, Dawson T M, London E D, Bredt D S, Snyder S H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 1991; 88: 6368–6370
  • del Rio-Hortega P. Microglia. Cytology and Cellular Pathology of the Nervous System, W Penfield. Paul P. Hocker, New York 1932; vol. 2: 481–584
  • Dickson D W, Mattiace L A, Kure K, Hutchins K, Lyman W D, Brosnan C F. Microglia in human disease, with an emphasis on acquired immune deficiency syndrome. Lab Invest 1991; 64: 135–156
  • Eddleston M, Mucke L. Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience 1993; 54: 15–36
  • Espey M G, Moffett J R, Namboodiri M AA. Temporal and spatial changes of quinolinic acid immunoreactivity in the immune system of lipopolysaccharide-stimulated mice. J Leukocyte Biol 1995; 57: 199–206
  • Floyd R A. Role of oxygen free radicals in carcinogenesis and brain ischaemia. FASEB J 1990; 4: 2587–2597
  • Gelbard H A, Dzenko K A, DiLoreto D, del Cerro C, del Cerro M, Epstein L G. Neurotoxic effects of tumor necrosis factor alpha in primary human neuronal cultures are mediated by activation of the glutamate AMPA receptor subtype: implications for ADDS neuropathogenesis. Dev Neurosci 1993; 15: 417–422
  • Gelbard H A, Nottet H, Dzenko K A, Jett M, Genis P, White R, Wang L, Choi Y-B, Zhang D, Lipton S A, Swindells S, Epstein L G, Gendelman H E. Platelet-activating factor: A candidate human immunodeficiency virus type-1-infected neurotoxin. J Virol 1994; 68: 4628–4635
  • Gendelman H E, Lipton S A, Tardieu M, Bukrinsky M I, Nottet H SLM. The neuropathogenesis of HIV-1 infection. J Leukocyte Biol 1994; 56: 389–398
  • Genis P, Jett M, Bernton E W, Boyle T, Gelbard H A, Dzenko K, Keane R W, Resnick L, Mizrachi Y, Volsky R W, Epstein L G, Gendelman H E. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HTV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med 1992; 176: 1703–1718
  • Giulian D, Vaca K, Noonan C A. Secretion of neurotoxins by mononuclear phagocytes infected with HTV-1. Science 1991; 250: 1593–1596
  • Giulian D. Brain mononuclear phagocytes drive CNS injury during HIV-1 infection. Pathophysiology of Astrocytes and Microglia: Focus on Multiple Sclerosis and HFV-related Brain Damage. Institute Superiore Sanita, Rome 1995, Abst. 25
  • Hertz L. Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol 1979; 13: 277–323
  • Hewett S J, Csernansky C A, Choi D W. Selective potentiation of NMDA-induced neuronal injury following induction of astrocyte iNOS. Neuron 1994; 13: 487–494
  • Hu S, Sheng W S, Peterson P K, Chao C C. Cytokine modulation of murine microglial cell superoxide production. Glia 1994; 13: 45–50
  • Hu S, Sheng W S, Peterson P K, Chao C C. Differential regulation by cytokines of production of nitric oxide by human astrocytes. Glia 1995; 15: 491–494
  • Jaranowska A, Bussolino F, Sogos V, Arese M, Lauro G M, Gremo F. Platelet-activating factor production by human fetal microglia. Mol Chem Neuropathol 1995; 24: 95–106
  • Lee S C, Liu W, Dickson D W, Brosnan C F, Berman J W. Cytokine production by human fetal microglia and astrocytes: differential induction by lipopolysaccharide and IL-1β. J Immunol 1993a; 150: 2659–2667
  • Lee S C, Dickson D W, Liu W, Brosnan C F. Induction of nitric oxide synthase activity in human astrocytes by interleukin-1β and interferon-gamma. J Neuroimmunol 1993b; 46: 19–24
  • Lee S C, Dickson D W, Brosnan C F, Casadevall A. Human astrocytes inhibit Cryptococcus neoformans growth by a nitric oxide-mediated mechanism. J Exp Med 1994; 180: 365–369
  • Lipton S A, Choi Y-B, Pan Z-H, Lei S Z, Chen H-SV, Sucher N J, Loscalzo J, Singel D J, Stamler J S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993; 364: 626–632
  • Lipton S A. HIV-related neuronal injury. Potential therapeutic intervention with calcium channel antagonists and NMDA antagonists. Mol Neurobiol 1994; 8: 181–196
  • Lipton S A, Gendelman H E. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 1995; 332: 934–940
  • Mucke L, Eddleston M. Astrocytes in infectious and immune-mediated diseases of the central nervous system. FASEB J 1993; 7: 1226–1232
  • Nottet H SLM, Jett M, Flanagan C R, Zhai Q-H, Persidsky Y, Rizzino N, Bernton E W, Genis P, Baldwin T, Schwartz J, LaBenz C J, Gendelman H E. A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-α by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J Immunol 1995; 154: 3567–3581
  • Perry V H, Gordon S. Macrophages and microglia in the nervous system. TINS 1988; 11: 273–277
  • Peterson P K, Hu S, Anderson W R, Chao C C. Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J Infect Dis 1994; 170: 457–460
  • Peterson P K, Gekker G, Hu S, Chao C C. Human astrocytes inhibit intracellular multiplication of Toxoplasma gondii by a nitric oxide-mediated mechanism. J Infect Dis 1995; 171: 516–518
  • Peudenier S, Hery C, Montagnier L, Tardieu M. Human microglial cells: characterization in cerebral tissue and in primary culture, and study of their susceptibility to HIV-l infection. Ann Neurol 1991; 29: 152–161
  • Piani D, Frei K, Do K Q, Cuenod M, Fontana A. Murine brain macrophages induce NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 1991; 133: 159–162
  • Piani D, Spranger M, Frei K, Schaff S, Fontana A. Macrophage-induced cytotoxicity of N-methyl-D-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 1992; 22: 2429–2436
  • Piani D, Frei K, Pfister H-W, Fontana A. Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes or platelet-activating factor. J Neuroimmunol 1993; 48: 99–104
  • Prehn J H, Peruche B, Unsicker K, Kreiglstein J. Isoform-specific effects of transforming growth factor-beta on degeneration of primary neuronal cultures induced by cytotoxic hypoxia or glutamate. J Neurochem 1993; 60: 1665–1672
  • Pulliam L, Herndier B G, Tang N M, McGrath M S. Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 1991; 87: 503–512
  • Shukla S D. Platelet activating factor receptors and signal transduction mechanisms. FASEB J 1992; 6: 2296–2301
  • Talley A K, Dewhurst S, Perry S W, Dollard S C, Gummuluru S, Fine S M, New D, Epstein L G, Gendelman H E, Gelbard H A. Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl-2 and. crmA. Mol Cell Biol 1995; 15: 2359–2366
  • Tanaka M, Sotomatsu A, Yoshida T, Hirai S, Nishida A. Detection of superoxide production by activated microglia using a sensitive and specific chemiluminescence assay and microglia-mediated PCl2h cell death. J Neurochem 1994; 63: 266–270
  • Tardieu M, Hery C, Peudenier S, Boespflug O, Montagnier L. Human immunodeficiency virus type-1 infected monocytic cells can destroy human neural cells after cell-to-cell adhesion. Ann Neurol 1992; 32: 11–17
  • Toru-Delbauffe D, Baghdassarian-Chalaye D, Gavaret J M, Courtin F, Pomerance M, Pierre M. Effect of transforming growth factor βl on astroglial cells in culture. J Neurochem 1990; 54: 1056–1061

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.