3
Views
1
CrossRef citations to date
0
Altmetric
Review Article

The latency associated transcripts (LAT) of herpes simplex virus: Still no end in sight

&
Pages 313-321 | Received 20 Mar 1997, Accepted 14 Jul 1997, Published online: 10 Jul 2009

References

  • Bailleul B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res 1996; 24: 1015–1019
  • Block T M, Deshmane S, Masonis J, Maggioncalda J, Valvi N T, Fraser N W. An HSV LAT null mutant reactivates slowly from latent infection and makes small plaques on CV‐1 monolayers. Virology 1993; 192: 618–630
  • Block T M, Spivack J G, Steiner I, Deshmane S, McIntosh M T, Lirette R P, Fraser N W. A herpes simplex virus type 1 latency‐associated transcript mutant reactivates with normal kinetics from latent infection. J Virol 1990; 64: 3417–3426
  • Bloom D C. 1997, Unpublished results
  • Bloom D C, Devi‐Rao G B, Hill J M, Stevens J G, Wagner E K. Molecular analysis of herpes simplex virus type 1 during epinephrine induced reactivation of latently infected rabbitsin vivo. J Virol 1994; 68: 1283–1292
  • Bloom D C, Hill J M, Wagner E K, Feldman L T, Stevens J G. A 348 base pair region in the latency associated transcripts facilitates herpes simplex virus type 1 reactivation. J Virol 1996; 70: 2449–2459
  • Bloom D C, Stevens J G, Hill J M, Tran R K. Mutagenesis of a cAMP response element within the latency‐associated transcript promoter of HSV‐1 reduces adrenergic reactivation. Virology 1997, submitted
  • Capel B S, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell‐Badge R. Circular transcripts of the testis determining gene Sry in adult mouse testis. Cell 1993; 73: 1019–1130
  • Cavalle J, Nicoloso M, Bachellerie J. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 1996; 383: 732–735
  • Cedar H, Razin A. DNA methylation and development. Biochem Biophys Acta 1990; 1049: 1–8
  • Cross S H, Bird A P. CpG islands and genes. Curr Opin Genet Develop 1995; 5: 309–314
  • Deatly A M, Spivack J G, Lavi E, Fraser N W. RNA from an immediate early region of the type‐1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proc Natl Acad Sci USA 1987; 84: 3204–3208
  • Devi‐Rao G B, Bloom D C, Stevens J G, Wagner E K. Herpes simplex virus type DNA replication and gene expression during explant induced reactivation of latently infected murine sensory ganglia. J Virol 1994; 68: 1271–1282
  • Devi‐Rao G B, Goodart S A, Hecht L M, Rochford R, Rice M K, Wagner E K. Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency‐associated transcripts. J Virol 1991; 65: 2179–2190
  • Dressier G R, Rock D L, Fraser N W. Latent herpes simplex virus type 1 DNA is not extensively methylatedin vivo. J Gen Virol 1987; 68: 1761–1765
  • Farrell M J, Dobson A T, Feldman L T. Herpes simplex virus latency‐associated transcript in a stable intron. Proc Natl Acad Sci USA 1991; 88: 790–794
  • Feldman L T. Transcription of the HSV‐1 genome in neuronsin vivo. Sem in Virol 1994; 5: 207–212
  • Fraser N W, Block T M, Spivack J G. The latency associated transcripts of herpes simplex virus: RNA in search of function. Virol 1992; 191: 1–8
  • Hill J M, Garza H H, Jr, Su Y H, Rapalie M, Hanna L C, Loutsch J M, Thompson H W, Varnell E D, Bloom D C, Block T M. A 437 base pair deletion at the beginning of the LAT promoter significantly reduces adrenergically‐induced HSV‐1 ocular reactivation in latently infected rabbits. J Virol 1997, in press
  • Hill J M, Gebhardt B M, Wen R, Bouterie A M, Thompson H W, O'Callaghan R J, Halford W P, Kaufman H E. Quantitation of herpes simplex virus type 1 DNA and latency‐associated transcripts in rabbit trigeminal ganglia demonstrates a stable reservoir of viral nucleic acids during latency. J Virol 1996a; 70: 3137–3141
  • Hill J M, Maggioncalda J B, Garza H H, Jr, Su Y H, Fraser N W, Block T M. In vivo epinephrine reactivation of ocular herpes simplex virus type 1 in the rabbit is correlated to a 370 base pair region located between the promoter and the 5′ end of the 2.0 kilobase latency associated transcript. J Virol 1996b; 70: 7270–7274
  • Hill J M, Sederati F, Javier R T, Wagner E K, Stevens J G. Herpes simplex virus latent phase transcript facilitates in vivo reactivation. Virology 1990; 174: 117–125
  • Ho D Y, Mocarski E S. Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc Natl Acad Sci USA 1989; 86: 7596–7600
  • Katsafanas G C, Schirmer E C, Wyatt L S, Frankel N. In vitro activation of human herpesviruses 6 and 7 from latency. Proc Natl Acad Sci USA 1996; 93: 9788–9792
  • Kieff E D. Epstein Barr virus and its replication. Fields VirologyThird Edition, B N Fields, D M Knipe, P M Howley, et al. Lipp incott‐Raven Publishers, Philadelphia 1996; 2343–2396
  • Kosz‐Vnenchak M, Jacobson J, Coen D M, Knipe D M. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J Virol 1993; 67: 5383–5393
  • Kramer M F, Coen D M. Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol 1995; 69: 1389–1399
  • Lagunoff M, Randall G, Roizman B. Phenotypic properties of herpes simplex virus 1 containing a derepressed open reading frame P gene. J Virol 1996; 70: 1810–1817
  • Lazinski D W, Taylor J M. Regulation of the hepatitis delta virus ribozyme: to cleave or not to cleave?. RNA 1995; 1: 225–233
  • Maggioncalda J, Mehta A, Fraser N W, Block T M. Analysis of a herpes simplex virus type 1 LAT mutant with a deletion between the putative promoter and the 5′ end of the 2.0‐kilobase transcript. J Virol 1994; 68: 7816–7824
  • Maggioncalda J, Mehta A, Su Y H, Fraser N W, Block T M. Correlation between herpes simplex virus type 1 rate of reactivation from latent infection and the number of infected neurons in trigeminal ganglia. Virology 1996; 225: 72–81
  • Mehta A, Maggioncalda J, Bagasra O, Block T M. A PCR DNA hybridization method to detect HSV‐1 DNA neuronal cells in situderived from latently infected people. Cell Vision J Morph Analys 1994; 1: 110–115
  • Mehta A, Maggioncalda J, Bagasra O, Thikkavarapu S, Saikumari P, Valyi‐Nagy T, Fraser N W, Block T M. In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology 1995; 206: 633–640
  • Mitchell W J, Gressens P, Martin J R, DeSanto R. Herpes simplex virus type 1 DNA persistance, progressive disease and transgenic immediate early gene promoter activity in chronic corneal infections in mice. J Gen Virology 1994; 75: 1201–1210
  • Nicoloso M, Qu L H, Michot B, Bachellerie J P. Intron endoced, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′‐O‐ribose methylation of rRNAs. J Mol Biol 1996; 260: 178–195
  • Perng G C, Dunkel E C, Geary P A, Slanina S M, Ghiasi H, Kaiwar R, Nesburn A B, Wechsler S L. The latency‐associated transcript gene of herpes simplex virus type 1 (HSV‐1) is required for efficient in vivo spontaneous reactivation of HSV‐1 from latency. J Virol 1994; 68: 8045–8055
  • Perng G C, Ghiasi H, Slanina S M, Nesburn A B, Wechsler S L. The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kbs of the 8.3 kb primary transcript. J Virol 1996a; 70: 976–984
  • Perng G ‐C, Slanina S M, Ghiasi H, Nesburn A B, Wechsler S L. A 371‐nucleotide region between the herpes simplex virus type 1 (HSV‐1) LAT promoter and the 2‐kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV‐1. J Virol 1996b; 70: 2014–2018
  • Qian L, Vu M, Carter M, Wilkinson M. A spliced intron accumulates as a lariat in the nucleus of T cells. Nucleic Acid Res 1992; 20: 5340–5345
  • Ramakrishnan R, Fink D J, Jiang G, Desai G P, Glorioso J C, Levine M. Competitive quantitative PCR analysis of herpes simplex virus type 1 DNA and latency associated transcript RNA in latently infected cells of the rat brain. J Virol 1994; 68: 1864–1873
  • Rodahl E, Haarr L. Analysis of the 2‐kilobase latency‐associated transcript expressed in PC12 cells productively infected with herpes simplex virus type 1, evidence for a stable, nonlinear structure. J Virol 1997; 71: 1703–1707
  • Roizman B. Herpesviridae. Fields VirologyThird Edition, B N Fields, D M Knipe, P M Howley, et al. Lipp incott‐Raven Publishers, Philadelphia 1996a; 2221–2230
  • Roizman B, Sears A E. Herpes simplex viruses and their replication. Fields VirologyThird Edition, B N Fields, D M Knipe, P M Howley, et al. Lipincott‐Raven Publishers, Philadelphia 1996b; 2231–3395
  • Steiner I J, Spivack G, Lirette R P, Brown S M, MacLean A R, Subak‐Sharpe J, Fraser N W. Herpes simplex virus type 1 latency‐associated transcripts are evidently not essential for latent infection. EMBO J 1989; 8: 505–511
  • Stevens J G. Overview of herpes virus latency. Sem in Virol 1994; 5: 191–196
  • Stevens J G, Cook M L. Latent herpes simplex virus in spinal ganglia of mice. Science 1971; 173: 843–845
  • Stevens J G, Wagner E K, Devi‐Rao G B, Cook M L, Feldman L T. RNA complementary to a herpes virus alpha gene mRNA is prominent in latently infected neurons. Science 1987; 235: 1056–1059
  • Straus S. Herpes simplex virus and its relatives. Mechanisms of Microbial Disease, M Schaecter, G Medoff, B Eisenstine. Williams and Wilkins, Publ, Balt, MD 1993
  • Su Y ‐H, Talsinger R, Fraser N W, Taylor J M, Block T M. 1997, Unpublished results
  • Trousdale M, Steiner I, Spivack J G, Deshmane S, Brown S, Maclean A, Subak‐Sharpe J, Fraser N W. Evidence that the herpes simplex virus type 1 latency associated transcripts play a role in reactivation of latent infectionin vivo. J Virol 1991; 65: 6989–6993
  • Wagner E K. Herpes simplex virus ‐ moleucular biology. Encyclopedia of Virology, R G Webster, A Granoff. Academic Press, London 1994; 593–603
  • Wagner E K, Devi‐Rao G B, Feldman L T, Dobson A T, Zhang Y F, Flanagan W M, Stevens J G. Physcial characterization of the herpes simplex virus latency‐associated transcript in neurons. J Virol 1988; 62: 1194–1202
  • Wagner E K, Guzowski J F, Singh J. Transcription of the herpes simplex virus genome during productive and latent infection. Progress in Nucleic Acid Besearch and Molecular Biology, W H Cohn, K Moldave. Academic Press. 1995; Vol. 51: 123–165
  • Wassenegger M, Heimes S, Riedel L, Sanger H L. RNA directed de novo methylation of genomic sequences in plants. Cell 1994; 76: 567–576
  • Wu T T, Block T, Taylor J. 1997, Unpublished results
  • Wu T ‐T, Su Y ‐H, Block T M, Taylor J M. Evidence that two latency associated transcripts of herpes simplex virus type 1 are non linear. J Virol 1996; 70: 5962–5967
  • Yang J, Zimmerly S, Perlman P S, Lambowitz A M. Efficient integration of an intron RNA into double stranded DNA by reverse transcriptase. Nature 1996; 381: 332–335
  • Zabolotny J M, Krummenacher C, Fraser N W. The herpes simplex virus type 1 2.0‐kilobase latency associated transcript is a stable intron which branches at a guanosine. J Virol 1977; 71: 4199–4208
  • Zaphiropoulos P G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: Correlation with exon skipp ing. Proc Natl Acad Sci USA 1996; 93: 6536–6541

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.