9
Views
3
CrossRef citations to date
0
Altmetric
Original Article

HIV-1 LTR DNA sequence variation in brain-derived isolates

&
Pages 331-341 | Received 19 Feb 1997, Accepted 20 Jun 1997, Published online: 10 Jul 2009

References

  • Achim C L, Wang R, Miners D L, Wiley C A. Brain viral burden in HIV infection. J Neurolpathol Exp Neurol 1994; 53: 284–294
  • Ait‐Khaled M, McLaughlin J E, Johnson M A, Emery V C. Distinct HIV‐1 long terminal repeat quasi‐species present in nervous tissues compared to that in lung, blood and lymphoid tissues of an AIDS patient. AIDS 1995; 9: 675–683
  • Anand R, Reed C, Forlenza S, Siegal F, Cheung T, Moore J. Non‐cytocidal natural variants of human immunodeficiency virus isolated from AIDS patients with neurological disorders. Lancet 1987; 2: 234–238
  • Atwood W J, Berger J R, Kaderman R, Tornatore C S, Major E O. Human immunodeficiency virus type 1 infection in the brain. Clin Microbiol Rev 1993; 6: 339–366
  • Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner J P, Tawadros R, Pomerantz R J. Cellular reservoirs of HIV‐1 in the central nervous system of HIV‐1‐infected‐individuals: identification by the combination of in situ polymerase chain reaction and immuno‐histochemistry. AIDS 1996; 10(6)573–585
  • Ball J E, Holmes E C, Whitwell H, Desselberger U. Genomic variation of human immunodeficiency virus type 1 (HIV‐1): molecular analyses of HIV‐1 in sequential blood samples and various organs obtained at autopsy. J Gen Virol 1994; 75: 867–879
  • Böni J, Emmerich B S, Leib S L, Wiestler O D, Schupbach J, Kleihus P. PCR identification of HIV‐1 DNA sequences in brain tissue of patients with AIDS encephalopathy. Neurology 1993; 43: 1813–1817
  • Boyd M T, Simpson G R, Cann A J, Johnson M A, Weiss R A. A single amino acid substitution in the VI loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. J Virol 1993; 67: 3649–3652
  • Brüstle O, Spiegel H, Leib S L, Finn T, Stein H, Kleihues P, Wiestler O D. Distribution of human immunodeficiency virus (HIV) in the CNS of children with severe HIV encephalomyelopathy. Acta Neuropathol 1992; 84: 24–31
  • Buzy J M, Lindstrom L M, Zink C, Clements J E. HIV‐1 in the developing CNS: developmental differences in gene expression. Virology 1995; 210: 361–371
  • Cann A J, Churcher M J, Boyd M, O'Brien W, Zhae J, Chen I S Y. The region of the envelope gene of human immunodeficiency virus type 1 responsible for determination of cell tropism. J Virol 1992; 66: 305–309
  • Canonne‐Hergauz F, Aunis D, Schaffer E. Interactions of the transcription factor AP‐1 with the long terminal repeat of different human immunodeficiency virus type 1 strains in jurkat, glial, and neuronal cells. J Virol 1995; 69: 6634–6642
  • Celander D, Haseltine W A. Tissue‐specific transcription preference as a determinant of cell tropism and leukaemogenic potential of murine retroviruses. Nature 1984; 312: 159–162
  • Cheng‐Mayer E, Quiroga M, Tung J W, Dina D, Levy J A. Viral determinants of human immunodeficiency virus type 1 T‐cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J Virol 1990; 64: 4390–4398
  • Cheng‐Mayer D, Weiss C, Seto D, Levy J A. Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci USA 1989; 86: 8575–8579
  • Chesebro D, Wehrly K, Hishio J, Perryman S. Macrophage‐tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T‐cell tropic isolates: Definition of critical amino acids involved in cell tropism. J Virol 1992; 66: 6547–6554
  • Corboy J R, Buzy J M, Zink M C, Clements J E. Expression directed from HIV long terminal repeats in the central nervous system of transgenic mice. Science 1992; 258: 1804–1808
  • Davis L E, Hjelle B L, Miller V E, Palmer D L, Llewellyn A L, Merlin T L, Young S A, Millis R G, Wachsman W, Wiley C A. Early viral brain invasions in iatrogenic human immunodeficiency virus infection. Neurology 1992; 42: 1736–1739
  • Delassus S, Cheynier R, Wain‐Hobson S. Evolution of human immunodeficiency virus type 1 nef and long terminal repeat sequences over 4 years in vivo and in vitro. J Virol 1991; 65: 225–231
  • Epstein L G, Goudsmit J, Paul D A, Morrison S H, Connor E M, Oleske J M, Holland B. Expression of human immunodeficiency virus in cerebrospinal fluid of children with progressive encephalopathy. Ann Neurol 1987; 21: 397–401
  • Epstein L G, Kuiken C, Blumberg B M, Hartman S, Sharer L R, Clement M, Goudsmit J. HIV‐1 V3 domain variation in brain and spleen of children with AIDS: tissue‐specific evolution within host‐determined quasispecies. Virology 1991; 180: 583–590
  • Estable M C, Bell B, Merzouki A, Montaner J S G, O'Shaughnessy M V, Sadowski I J. Human immunodeficiency virus type 1 long terminal repeat variants from 42 patients representing all stages of infection display a wide range of sequence polymorphism and transcription activity. J Virol 1996; 70: 4053–4062
  • Gaynor R. Cellular transcription factors involved in the regulation of HIV‐1 gene expression. AIDS 1992; 6: 347–363
  • Glass J D, Fedor H, Wesselingh S L, McArthur J C. Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 1995; 38: 755–762
  • Golub E I, Li G, Volsky D J. Differences in the basal activity of the long terminal repeat determine different replicative capacities of two closely related human immunodeficiency virus type 1 isolates. J Virol 1990; 64: 3654–3660
  • Goodenow M M, Huet T, Saurin W, Kwok S, Sninsky J, Wain‐Hobson S. HIV‐1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. J Acquir Immune Defic Syndr Hum Retrovirol 1989; 2: 344–352
  • Groenink M, Andeweg A C, Fouchier A M, Broersen S M, Van Der Jagt R C, Schuitemaker H, De Goede R E Y, Rosch M L, Hisman H G, Tersmette M. Phenotype‐associated env gene variation among eight related human immunodeficiency virus type 1 clones: evidence for in vivo recombination and determinants of cytotropism outside the V3 domain. J Virol 1992; 66: 6175–6180
  • Hwang S S, Boyle T J, Lyerly H K, Cullen B R. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV‐1. Science 1991; 253: 71–74
  • Johnson R T, Glass J D, McArthur J C, Chesebro B W. Quantitation of human immunodeficiency virus in brains of demented and nondemented patients with acquired immunodeficiency syndrome. Ann Neurol 1996; 39: 392–395
  • Kim J Y H, Gonzalez‐Scarano F, Zeichner S L, Alwine J C. Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the ‐201 to ‐130 region of the long terminal repeat. J Virol 1993; 67: 1658–1662
  • Koenig S, Gendelman H E, Orenstein J M, Dal Canto M C, Pezeshkpour G H, et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 1986; 233: 1089–1093
  • Koken S E C, VanWamel J L B, Goudsmit J, Berkhout B, Geelen J L M C. Natural variants of the HIV‐1 long terminal repeat: analysis of promoters with duplicated DNA regulatory motifs. Virology 1992; 191: 968–972
  • Korber B T M, Kunstman K J, Patterson B K, Fertado M, McEvilly M M, Levy R, Wolinsky A M. Genetic differences between blood‐ and brain‐derived viral sequences from human immunodeficiency virus type 1‐infected patients: evidence of conserved elements in the V3 region of the envelope protien of brain‐derived sequences. J Virol 1994; 68: 7467–7481
  • Koyanagi Y, Miles S, Mitsuyasu T R, Merrill J E, Vinters H V, Chen I S Y. Dual infection of the cnetral nervous system by AIDS viruses with distinct cellular tropisms. Science 1987; 236: 819–822
  • Krebs F C, Goodenow M M, Wigdahl B. Neuroglial ATF/CREB factors interact with the human immunodeficiency virus type 1 long terminal repeat. J. Neurovirol 1997; 3(supp 1)S28–S32
  • Kuiken C L, Goudsmit J, Weiller G F, Armstrong J S, Hartman S, Portegies P, Dekker J, Cornelissen M. Differences in human immunodeficiency virus type 1 V3 sequences from patients with and without AIDS dementia complex. J Gen Virol 1995; 76: 175–180
  • Kurth J, Buzy J M, Lindstrom L, Clements J E. In vivo transcriptional regulation of the human immunodeficiency virus in the central nervous system in transgenic mice. J Virol 1996; 70: 7686–7694
  • Lenz J, Celander D, Crowther R L, Patarca R, Perkins D W, Haseltine W A. Determination of the leukaemogenicitv of a murine retrovirus by sequences within the long terminal repeat. Nature 1984; 308: 467–470
  • Li Y, Hui H, Burgess C J, Price R W, Sharp P M, Hahn B H, Shaw G M. Complete nucleotide sequence, genome organization, biological properties of human immunodeficiency virus type 1 in vivo: evidence for limited defectiveness and complementation. J Virol 1992; 66: 6587–6600
  • Liu Z Q, Wood C, Levy J A, Cheng‐Mayer C. The viral envelope gene is involved in macrophage tropism of a human immunodeficiency virus type 1 strain isolated from brain tissue. J Virol 1990; 64: 6148–6153
  • Lu Y, Touzjian N, Stenzel M, Dorfman T, Sodroski J G, Haseltine W A. Identification of cis‐acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1. J Virol 1990; 64: 5226–5229
  • Masliah E, Achim C L, Ge N, DeTeresa R, Terry R D, Wiley C A. Spectrum of human immunodeficiency virus‐associated neocortical damage. Ann Neurol 1992; 32: 321–329
  • McArthur J C, Seines O A, Glass J D, Hoover D R, Bacellar H. HIV dementia: incidence and risk factors. In HIV, AIDS and the Brain, R W Price, S W Perry. Raven Press, Ltd., New York 1994; 251–272
  • McNearney T, Hornickova Z, Templeton A, Birdwell A, Arens M, Markham R, Saah A, Taner L. Nef and LTR sequence variation from sequentially derived human immunodeficiency virus type 1 isolates. Virology 1995; 208: 388–398
  • Michael N L, D'Arcy L, Ehrenberg P K, Redfield R R. Naturally occurring genotypes of the human immunodeficiency virus type 1 terminal repeat display a wide range of basal and tat‐induced transcriptional activities. J Virol 1994; 68: 3163–3174
  • Monken C E, Wu B, Srinivasan A. High resolution analysis of HIV‐1 quasispecies in the brain. AIDS 1995; 9: 345–349
  • Human Retoviruses and AIDS 1995, G Myers, B Korber, B Hahn, K. ‐T Jeang, G Pavlakis, J Meicors, F McCutchan, L Henderson. Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico 1995
  • Navia B A, Jordan B D, Price R W. The AIDS dementia complex: I. clinical features. Ann Virol 1986; 19: 517–524
  • Nuovo G J, Gallery F, MacConnell P, Braun A. In situ detection of PCR‐amplified HIV‐1 nuclei acids and tumor necrosis factor alpha RNA in the central nervous system. Am J Pathol 1994; 144: 659–666
  • O'Brien W A, Koyanagi Y, Namazie A, Zhao J, Diagne A, Idler K, Zack J A, Chen I S Y. HIV‐1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4‐binding domain. Nature 1990; 348: 69–73
  • Orchard K, Perkins N, Chapman C, Harris J, Emery V, Goodwin G, Latchman D, Collins M. A novel T‐cell protein which recognizes a palindromic sequence in the negative regulatory element of the human immunodeficiency virus long terminal repeat. J Virol 1990; 64: 3234–3239
  • Pang S, Vinters H V, Akashi T, O'Brien W A, Chen I S Y. HIV‐1 env sequence variation in brain tissue patients with AIDS‐related neurologic disease. J Acquir Immun Defic Syndr 1991; 4: 1082–1092
  • Poliquin L, Bergeron D, Fortier J, Paquette Y, Bergeron R, Rassart E. Determinants of thymotropism in Kaplan radiation leukemia virus and nucleotide sequence of its envelope region. J Virol 1992; 66: 5141–5146
  • Pomerantz R J, Feinberg M B, Andino R, Baltimore D. The long terminal repeat is not a major determinant of the cellular tropism of human immunodeficiency virus type 1. J Virol 1991; 65: 1041–1045
  • Portis J L, Czub S, Garon C F, McAtee F J. Neurodegenerative disease induced by the wild mouse ecotropic retrovirus is markedly accelerated by long terminal repeat gag‐pol sequences from nondefective friend murine leukemia virus. J Virol 1990; 64: 1648–1656
  • Power C, McArthur J C, Johnson R T, Griffin D E, Glass J D, Perryman S, Chesebro. Demented and nondemented patients with AIDS differ in brain‐derived human immunodeficiency virus type 1 envelope sequences. J Virol 1994; 68: 4643–4649
  • Resnick L, Berger J R, Shapshak P, Tourtelotte W W. Early penetration of the blood brain barrier by HIV. Neurology 1988; 38: 9–14
  • Rosen C A, Haseltine W A, Lenz J, Ruprecht R, Cloyd M W. Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences. J Virol 1985; 55: 862–866
  • Rosen C A, Sodroski J G, Haseltine. The location of cis‐acting regulatory sequences in the human T cell lymphotrophic virus type III long terminal repeat. Cell 1985; 41: 813–823
  • Saito Y, Sharer L R, Epstein L G, Michaels J, Mintz M, Louder M, Golding K, Cvetkovich T A, Blumberg B M. Overexpression of nef as a marker for restricted HIV‐1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 1994; 44: 474–481
  • Saitou N, Nei M. The neighbor‐joining method: a new method for reconstructing phylogenetic trees. Molec Biological Evolution 1987; 4: 406–425
  • Sharer L R. Pathology of HIV‐1 infection of the central nervous system. A review. J Neuropathol Exp Neurol 1992; 51: 3–11
  • Sharpless N E, O'Brien W A, Verdin E, Kufta C V, Chen I S Y, Dubois‐Dalcq M. Human immunodeficiency virus type 1 tropism for brain microglial cells is determined by a region of the env glycoprotein that also controls macrophage tropism. J Virol 1992; 66: 2588–2593, 2
  • Shimizu N S, Shimizu N G, Takeuchi Y, Hoshino H. Isolation and characterization of human immunodeficiency virus type 1 variants infectious to brain‐derived cells: detection of common point mutations in the V3 region of the env gene of the variants. J Virol 1994; 68: 6130–6135
  • Shioda T, Levy J A, Cheng‐Mayer C. Macrophage and T cell‐line tropisms of HIV‐1 are determined by specific regions of the envelope gp120 gene. Nature 1991; 349: 167–169
  • Small J A, Bieberich C, Ghotbi A, Hess J, Scangos G A, Clements J E. The visna virus long terminal repeat directs expression of a reporter gene in activated macrophages, lymphocytes, and the central nervous systems of transgenic mice. J Virol 1989; 63: 1891–1896
  • Takahashi K, Wesselingh S L, Griffin D E, McArthur J C, Johnson R T, Glass J D. Localization of HIV‐1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 1996; 39: 705–711
  • Tillmann M, Krebs F C, Wessner R, Pomeroy S M, Goodenow M M, Wigdahl B. Neuroglial‐specific factors and the regulation of retrovirus transcription. Advances in Neuroimmunology 1994; 4: 305–318
  • Tornatore C, Chandra R, Berger J R, Major E O. HIV‐1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 1994; 44: 481–487
  • Watkins B A, Dorn H H, Kelly W B, Armstrong R C, Potts B J, Michaels F, Kufta C V, Dubois‐Dalcq M. Specific tropism of HIV‐1 for microglial cells in primary human brain cultures. Science 1990; 249: 549–553
  • Weiser B, Peress N, La Neve D, Eilbott D J, Seidman R, Burger H. Human immunodeficiency virus type 1 expression in the central nervous system correlates directly with extent of disease. Proc Natl Acad Sci USA 1990; 87: 3997–4001
  • Wiley C A, Baldwin M, Achim C L. Expression of HIV regulatory and structural mRNA in the central nervous system. AIDS 1996; 10: 843–847
  • Wiley C A, Schrier R D, Nelson J A, Lampert P W, Oldstone M B A. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Pro Natl Acad Sci USA 1986; 83: 7089–7093
  • Yuen P H, Tzeng E, Knupp C, Wong P K Y. The neurovirulent determinants of ts1, a paralytogenic mutant of moloney murine leukemia virus TB, are localized in at least two functionally distinct regions of the genome. J Virol 1986; 59: 59–65
  • Zeichner S L, Hirka G, Andrews P W, Alwine J C. Differentiation‐dependent human immunodeficiency virus long terminal repeat regulatory elements active in human terarocarcinoma cells. J Virol 1992; 66: 2268–2273

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.