190
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Mixed bacterial-fungal infections in the CF respiratory tract

&
Pages S125-S132 | Received 03 Mar 2010, Accepted 02 Sep 2010, Published online: 10 Nov 2010

References

  • O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet 2009; 373: 1891–1904.
  • Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med 2005; 352: 1992–2001.
  • Davis PB. Cystic fibrosis since 1938. Am J Respir Crit Care Med 2006; 173: 475–482.
  • Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003; 168: 918–951.
  • Pihet M, Carrere J, Cimon B, . Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis – a review. Med Mycol 2009; 47: 387–397.
  • Chotirmall SH, O’Donoghue E, Bennett K, . Sputum Candida albicans presages Fev1 decline and hospitalized exacerbations in cystic fibrosis. Chest 2010.
  • Bouchara JP, Hsieh HY, Croquefer S, . Development of an oligonucleotide array for direct detection of fungi in sputum samples from patients with cystic fibrosis. J Clin Microbiol 2009; 47: 142–152.
  • Cimon B, Carrere J, Vinatier JF, . Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2000; 19: 53–56.
  • Haase G, Skopnik H, Kusenbach G. Exophiala dermatitidis infection in cystic fibrosis. Lancet 1990; 336: 188–189.
  • Navarro J, Rainisio M, Harms HK, . Factors associated with poor pulmonary function: cross-sectional analysis of data from the ERCF. European Epidemiologic Registry of Cystic Fibrosis. Eur Respir J 2001; 18: 298–305.
  • Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 2009; 137: 171–176.
  • Shoseyov D, Brownlee KG, Conway SP, Kerem E. Aspergillus bronchitis in cystic fibrosis. Chest 2006; 130: 222–226.
  • Bauernfeind A, Bertele RM, Harms K, . Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. Infection 1987; 15: 270–277.
  • Bakare N, Rickerts V, Bargon J, Just-Nubling G. Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses 2003; 46: 19–23.
  • Storey DG, Ujack EE, Rabin HR, Mitchell I. Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 1998; 66: 2521–2528.
  • Marchac V, Equi A, Le Bihan-Benjamin C, Hodson M, Bush A. Case-control study of Stenotrophomonas maltophilia acquisition in cystic fibrosis patients. Eur Respir J 2004; 23: 98–102.
  • Haase G, Skopnik H, Groten T, Kusenbach G, Posselt HG. Long-term fungal cultures from sputum of patients with cystic fibrosis. Mycoses 1991; 34: 373–376.
  • Cenci E, Mencacci A, Del Sero G, Bistoni F, Romani L. Induction of protective Th1 responses to Candida albicans by antifungal therapy alone or in combination with an interleukin-4 antagonist. J Infect Dis 1997; 176: 217–226.
  • Moore TA, Standiford TJ. The role of cytokines in bacterial pneumonia: an inflammatory balancing act. Proc Assoc Am Physicians 1998; 110: 297–305.
  • Dubin PJ, Kolls JK. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol 2007; 292: L519–528.
  • Johansen HK, Hougen HP, Cryz SJ, Jr., Rygaard J, Hoiby N. Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia in rats. Am J Respir Crit Care Med 1995; 152: 1337–1346.
  • Mencacci A, Spaccapelo R, Del Sero G, . CD4+ T-helper-cell responses in mice with low-level Candida albicans infection. Infect Immun 1996; 64: 4907–4914.
  • Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008; 6: 67–78.
  • Allard JB, Rinaldi L, Wargo MJ, . Th2 allergic immune response to inhaled fungal antigens is modulated by TLR-4-independent bacterial products. Eur J Immunol 2009; 39: 776–788.
  • Moss RB, Bocian RC, Hsu YP, . Reduced IL-10 secretion by CD4+ T lymphocytes expressing mutant cystic fibrosis transmembrane conductance regulator (CFTR). Clin Exp Immunol 1996; 106: 374–388.
  • Moss RB, Hsu YP, Olds L. Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin Exp Immunol 2000; 120: 518–525.
  • Henry M, Bennett DM, Kiely J, Kelleher N, Bredin CP. Fungal atopy in adult cystic fibrosis. Respir Med 2000; 94: 1092–1096.
  • Maiz L, Cuevas M, Quirce S, . Serologic IgE immune responses against Aspergillus fumigatus and Candida albicans in patients with cystic fibrosis. Chest 2002; 121: 782–788.
  • Allard JB, Poynter ME, Marr KA, . Aspergillus fumigatus generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator. J Immunol 2006; 177: 5186–5194.
  • Mueller C, Torrez D, Braag S, . Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno- associated virus gene transfer of truncated CFTR gene. J Gene Med 2008; 10: 51–60.
  • Roux D, Gaudry S, Dreyfuss D, . Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat. Crit Care Med 2009; 37: 1062–1067.
  • Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med 1999; 10: 359–383.
  • Thein ZM, Samaranayake YH, Samaranayake LP. Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch Oral Biol 2006; 51: 672–680.
  • Azoulay E, Timsit JF, Tafflet M, . Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest 2006; 129: 110–117.
  • Adair CG, Gorman SP, Feron BM, . Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 1999; 25: 1072–1076.
  • Foster KW, Thomas L, Warner J, Desmond R, Elewski BE. A bipartite interaction between Pseudomonas aeruginosa and fungi in onychomycosis. Arch Dermatol 2005; 141: 1467–1468.
  • Hogan DA, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 2002; 296: 2229–2232.
  • Boon C, Deng Y, Wang LH, . A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2008; 2: 27–36.
  • Ratjen F, Munck A, Kho P, Angyalosi G. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax 2009.
  • Treggiari MM, Rosenfeld M, Mayer-Hamblett N, . Early anti-pseudomonal acquisition in young patients with cystic fibrosis: rationale and design of the EPIC clinical trial and observational study. Contemp Clin Trials 2009; 30: 256–268.
  • Li Z, Kosorok MR, Farrell PM, . Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 2005; 293: 581–588.
  • Hoiby N, Krogh Johansen H, Moser C, . Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 2001; 3: 23–35.
  • Singh PK, Schaefer AL, Parsek MR, . Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000; 407: 762–764.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15: 167–193.
  • Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9: 34–39.
  • Harriott MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 2009; 53: 3914–3922.
  • Adam B, Baillie GS, Douglas LJ. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 2002; 51: 344–349.
  • Vediyappan G, Rossignol T, d’Enfert C. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 2010; 54: 2096–2111.
  • Mah TF, Pitts B, Pellock B, . A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003; 426: 306–310.
  • Wilson R, Sykes DA, Watson D, . Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 1988; 56: 2515–2517.
  • Lau GW, Hassett DJ, Ran H, Kong F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 2004; 10: 599–606.
  • Gibson J, Sood A, Hogan DA. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol 2009; 75: 504–513.
  • Kerr JR. Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol 1994; 32: 525–527.
  • Hoffman LR, Kulasekara HD, Emerson J, . Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros 2009; 8: 66–70.
  • McAlester G, O’Gara F, Morrissey JP. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol 2008; 57: 563–569.
  • Latifi A, Winson MK, Foglino M, . Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 1995; 17: 333–343.
  • Pearson JP, Gray KM, Passador L, . Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 1994; 91: 197–201.
  • Middleton B, Rodgers HC, Camara M, . Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 2002; 207: 1–7.
  • Erickson DL, Endersby R, Kirkham A, . Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 2002; 70: 1783–1790.
  • Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 2004; 54: 1212–1223.
  • Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 2008; 67: 47–62.
  • Deveau A, Piispanen AE, Jackson AA, Hogan DA. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cAMP signaling pathway. Eukaryot Cell 2010; 9: 569–577.
  • Burns JL, Van Dalfsen JM, Shawar RM, . Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infect Dis 1999; 179: 1190–1196.
  • Mastella G, Rainisio M, Harms HK, . Allergic bronchopulmonary aspergillosis in cystic fibrosis. A European epidemiological study. Epidemiologic Registry of Cystic Fibrosis. Eur Respir J 2000; 16: 464–471.
  • Hoppe JE, Theurer-Mainka U, Stern M. Comparison of three methods for culturing throat swabs from cystic fibrosis patients. J Clin Microbiol 1995; 33: 1896–1898.
  • Kerr JR, Taylor GW, Rutman A, . Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 1999; 52: 385–387.
  • Nagano Y, Elborn JS, Millar BC, . Comparison of techniques to examine the diversity of fungi in adult patients with cystic fibrosis. Med Mycol 2009; 47: 1–12.
  • Nagano Y, Millar BC, Goldsmith CE, . Development of selective media for the isolation of yeasts and filamentous fungi from the sputum of adult patients with cystic fibrosis (CF). J Cyst Fibros 2008; 7: 566–572.
  • Sibley CD, Parkins MD, Rabin HR, . A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci USA 2008; 105: 15070–15075.
  • Montero CI, Shea YR, Jones PA, . Evaluation of Pyrosequencing technology for the identification of clinically relevant non-dematiaceous yeasts and related species. Eur J Clin Microbiol Infect Dis 2008; 27: 821–830.
  • Boyanton BL, Jr., Luna RA, Fasciano LR, Menne KG, Versalovic J. DNA pyrosequencing-based identification of pathogenic Candida species by using the internal transcribed spacer 2 region. Arch Pathol Lab Med 2008; 132: 667–674.
  • Govan JRW, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60: 539–574.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.