205
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Regulation of expression, activity and localization of fungal chitin synthases

, , &
Pages 2-17 | Received 21 Dec 2010, Accepted 29 Mar 2011, Published online: 28 Apr 2011

References

  • Latgé J-P. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 2007; 66: 279–290.
  • Graybill JR. Hitting a new target with echinocandins: why chase something else? Curr Opin Invest Drugs 2001; 2: 468–471.
  • Ikeda F, Wakai Y, Matsumoto S, . Efficacy of FK463, a new lipopeptide antifungal agent, in mouse models of disseminated candidiasis and aspergillosis. Antimicrob Agents Chemother 2000; 44: 614–618.
  • Matsumoto S, Wakai Y, Nakai T, . Efficacy of FK463, a new lipopeptide antifungal agent, in mouse models of pulmonary aspergillosis. Antimicrob Agents Chemother 2000; 44: 619–621.
  • Tawara S, Ikeda F, Maki K, . In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi. Antimicrob Agents Chemother 2000; 44: 57–62.
  • Walsh TJ, Viviani MA, Arathoon E, . New targets and delivery systems for antifungal therapy. Med Mycol 2000; 38: 335–347.
  • García-Rodriguez LJ, Trilla JA, Castro C, . Characterization of the chitin biosynthesis process as a compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett 2000; 478: 84–88.
  • Popolo L, Gilardelli D, Bonfante P, Vai M. Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1Δ mutant of Saccharomyces cerevisiae. J Bacteriol 1997; 179: 463–469.
  • Ram AFJ, Kapteyn JC, Montijn RC, . Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 1998; 180: 1418–1424.
  • Valdivieso M-H, Ferrario L, Vai M, Duran A, Popolo L. Chitin synthesis in a gas1 mutant of Saccharomyces cerevisiae. J Bacteriol 2000; 182: 4752–4757.
  • Lagorce A, Hauser NC, Labourdette D, . Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 2003; 278: 20345–20357.
  • Lenardon MD, Whitton RK, Munro CA, Marshall D, Gow NAR. Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the Candida albicans cell wall. Mol Microbiol 2007; 66: 1164–1173.
  • Baker LG, Specht CA, Donlin MJ, Lodge JK. Chitosan, the acetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 2007; 6: 855–867.
  • Pammer M, Briza P, Fellinger A, . DIT101 (CSD2, CAL1), a cell cycle-regulated yeast gene required for synthesis of chitin in cell walls and chitosan in spore walls. Yeast 1992; 8: 1089–1099.
  • 15Cabib E, Durán A. Synthase III-dependent chitin is bound to different acceptors depending on location on the cell wall of budding yeast. J Biol Chem 2005; 280: 9170–9179.
  • Ruiz-Herrera J, San-Blas G. Chitin synthesis as a target for antifungal drugs. Curr Drug Targets 2003; 3: 77–91.
  • Cabib E. Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrob Agents Chemother 1991; 35: 170–173.
  • Gaughran JP, Lai MH, Kirsch DR, Silverman SJ. Nikkomycin Z is specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J Bacteriol 1994; 176: 5857–5860.
  • Kim M-K, Park H-S, Kim C-H, Park H-M, Choi W. Inhibitory effect of nikkomycin Z on chitin synthases in Candida albicans. Yeast 2002; 19: 341–349.
  • Hector RF, Zimmer BL, Pappagianis D. Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 1990; 34: 587–593.
  • Graybill JR, Najvar LK, Bocanegra R, Hector RF, Luther MF. Efficacy of nikkomycin Z in the treatment of murine histoplasmosis. Antimicrob Agents Chemother 1998; 42: 2371–2374.
  • Clemons K, Stevens D. Efficacy of nikkomycin Z against experimental pulmonary blastomycosis. Antimicrob Agents Chemother 1997; 41: 2026–2028.
  • Becker JM, Marcus S, Tullock J, . Use of the chitin-synthesis inhibitor nikkomycin to treat disseminated Candidiasis in mice. J Infect Dis 1988; 157: 212–214.
  • Ganesan LT, Manavathu EK, Cutright JL, Alangaden GL, Chandrasekar PH. In-vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus. Clin Microbiol Infect 2004; 10: 961–966.
  • Clemons KV, Stevens DA. Efficacy of micafungin alone or in combination against experimental pulmonary aspergillosis. Med Mycol 2006; 44: 69–73.
  • Li RK, Rinaldi MG. In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob Agents Chemother 1999; 43: 1401–1405.
  • Luque JC, Clemons KV, Stevens DA. Efficacy of micafungin alone or in combination against systemic murine Aspergillosis. Antimicrob Agents Chemother 2003; 47: 1452–1455.
  • Chiou CC, Mavrogiorgos M, Tillem E, Hector R, Walsh TJ. Synergy, pharmacodynamics, and time-sequenced ultrastructural changes of the interaction between nikkomycin Z and the echinocandin FK463 against Aspergillus fumigatus. Antimicrob Agents Chemother 2001; 45: 3310–3321.
  • Stevens DA. Drug interaction studies of a glucan synthase inhibitor (LY 303366) and a chitin synthase inhibitor (Nikkomycin Z) for inhibition and killing of fungal pathogens. Antimicrob Agents Chemother 2000; 44: 2547–2548.
  • Nix DE, Swezey RR, Hector R, Galgiani JN. Pharmacokinetics of Nikkomycin Z after single rising oral doses. Antimicrob Agents Chemother 2009; 53: 2517–2521.
  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: selected new molecules and beyond. Nature Reviews Drug Discovery 2010; 9: 719–727.
  • Lenardon MD, Munro CA, Gow NAR. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 2010; 13: 1–8.
  • Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 1968; 22: 87–108.
  • Beran K, Řeháĉek J. Content and structure of chitin in cell walls of the yeast Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 1969; 35: B3–4.
  • Bartnicki-Garcia S, Nickerson WJ. Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochemica et Biophysica Acta 1962; 58: 102–119.
  • Hearn VM, Sietsma JH. Chemical and immunological analysis of the Aspergillus fumigatus cell wall. Microbiology 1994; 140: 789–795.
  • Shaw JA, Mol PC, Bowers B, . The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 1991; 114: 111–123.
  • Schmidt M. Survival and cytokinesis of Saccharomyces cerevisiae in the absence of chitin. Microbiology 2004; 150: 3253–3260.
  • Durán A, Cabib E, Bowers B. Chitin synthetase distribution on the yeast plasma membrane. Science 1979; 203: 363–365.
  • Leal-Morales CA, Bracker CE, Bartnicki-Garcia S. Localization of chitin synthetase in cell-free homogenates of Saccharomyces cerevisiae: chitosomes and plasma membrane. Proc Natl Acad Sci USA 1988; 85: 8516–8520.
  • Bulawa CE, Slater M, Cabib E, . The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 1986; 46: 213–225.
  • Gow NAR, Robbins PW, Lester JW, . A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc Natl Acad Sci USA 1994; 91: 6216–6220.
  • Cabib E, Sburlati A, Bowers B, Silverman SJ. Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 1989; 108: 1665–1672.
  • Cabib E, Silverman SJ, Shaw JA. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbioll 1992; 138: 97–102.
  • Munro CA, Schofeld DA, Gooday GW, Gow NAR. Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology 1998; 144: 391–401.
  • Munro CA, Whitton RK, Hughes HB, . CHS8- a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genet Biol 2003; 40: 146–158.
  • Motoyama T, Kojima N, Horiuchi H, Ohta A, Takagi M. Isolation of a chitin synthase gene (chsC) of Aspergillus nidulans. Biosci, Biotechnol, Biochem 1994; 58: 2254–2257.
  • Munro CA, Gow NAR. Chitin synthesis in human pathogenic fungi. Med Mycol 2001; 39: 41–53.
  • Banks IR, Specht CA, Donlin MJ, . A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 2005; 4: 1902–1912.
  • Wang Z, Zheng L, Liu H, . WdChs2p, a class I chitin synthase, together with WdChs3p (Class III) contributes to virulence in Wangiella (Exophiala) dermatitidis. Infect Immun 2001; 69: 7517–7526.
  • Silverman SJ, Sburlati A, Slater ML, Cabib E. Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1988; 85: 4735–4739.
  • Munro CA, Winter K, Buchan A, . Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 2001; 39: 1414–1426.
  • Din AB, Yarden O. The Neurospora crassa chs-2 gene encodes a non-essential chitin synthase. Microbiology 1994; 140: 2189–2197.
  • Bulawa CE, Osmond BC. Chitin synthase I and chitin synthase II are not required for chitin synthesis in vivo in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1990; 87: 7424–7428.
  • Zheng L, Mendoza L, Wang Z, . WdChs1p, a class II chitin synthase, is more responsible than WdChs2p (Class I) for normal yeast reproductive growth in the polymorphic, pathogenic fungus Wangiella (Exophiala) dermatitidis. Arch Microbiol 2006; 185: 316–329.
  • Borgia PT, Iartchouk N, Riggle PJ, . The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol 1996; 20: 193–203.
  • Ichinomiya M, Motoyama T, Fujiwara M, . Repression of chsB expression reveals the functional importance of class IV chitin synthase gene chsD in hyphal growth and conidiation of Aspergillus fumigatus. Microbiology 2002; 148: 1335–1347.
  • Fukuda K, Yamada K, Deoka K, . Class III chitin synthase ChsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development. Eukaryot Cell 2009; 8: 945–956.
  • Mellado E, Aufauvre-Brown A, Gow NAR, Holden DW. The Aspergillus fumigatus chsC and chsG genes encode Class III chitin synthases with different functions. Mol Microbiol 1996; 20: 667–679.
  • Wang Z, Szaniszlo PJ. WdCHS3, a gene that encodes a class III chitin synthase in Wangiella (Exophiala) dermatitidis, is expressed differentially under stress conditions. J Bacteriol 2000; 182: 874–881.
  • Yarden O, Yanofsky C. Chitin synthase 1 plays a major role in cell wall biogenesis in Neurospora crassa. Genes Dev 1991; 5: 2420–2430.
  • Bulawa CE. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol Cell Biol 1992; 12: 1764–1776.
  • Valdivieso MH, Mol PC, Shaw JA, Cabib E, Durán A. CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. J Cell Biol 1991; 114: 101–109.
  • Bulawa CE, Miller DW, Henry LK, Becker JM. Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc Natl Acad Sci USA 1995; 92: 10570–10574.
  • Mio T, Yabe T, Sudoh M, . Role of three chitin synthase genes in the growth of Candida albicans. J Bacteriol 1996; 178: 2416–2419.
  • Roncero C, Valdivieso MH, Ribas JC, Durán A. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to calcofluor white. J Bacteriol 1988; 170: 1950–1954.
  • Carotti C, Ferrario L, Roncero C, Valdivieso M-H, Durán A. Maintenance of cell integrity in the gas1 mutant of Saccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusual Chs3p localization. Yeast 2002; 19: 1113–1124.
  • Motoyama T, Fujiwara M, Kojima N, . The Aspergillus nidulans genes chsA and chsD encode chitin synthases which have redundant functions in conidia formation. Mol Gen Genet 1997; 253: 520–528.
  • Specht CA, Yilun L, Robbins PW, . The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol 1996; 20: 153–167.
  • Din AB, Specht CA, Robbins PW, Yarden O. chs-4, a class IV chitin synthase gene from Neurospora crassa. Mol Gen Genet 1996; 250: 214–222.
  • Wang Z, Zheng L, Hauser M, Becker JM, Szaniszlo PJ. WdChs4p, a homolog of chitin synthase 3 in Saccharomyces cerevisiae, alone cannot support growth of Wangiella (Exophiala) dermatitidis at the temperature of infection. Infect Immun 1999; 67: 6619–6630.
  • Walker CA, Gómez BL, Mora-Montes HM, . Melanin externalization in Candida albicans depends on cell wall chitin structures. Eukaryot Cell 2010; 9: 1329–1342.
  • Yanai K, Kojima N, Takaya N, . Isolation and characterization of two chitin synthase genes from Aspergillus nidulans. Biosci, Biotechnol, Biochem 1994; 58: 1828–1835.
  • Horiuchi H, Fujiwara M, Yamashita S, Ohta A, Takagi M. Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol 1999; 181: 3721–3729.
  • Aufauvre-Brown A, Mellado E, Gow NAR, Holden DW. Aspergillus fumigatus chsE: a gene related to CHS3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 1997; 21: 141–152.
  • Liu H, Kauffman S, Becker JM, Szaniszlo PJ. Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. Eukaryot Cell 2004; 3: 40–51.
  • Mellado E, Specht CA, Robbins PW, Holden DW. Cloning and characterization of chsD, a chitin synthase-like gene of Aspergillus fumigatus. FEMS Microbiol Lett 1996; 143: 69–76.
  • Takeshita N, Yamashita S, Ohta A, Horiuchi H. Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 2006; 59: 1380–1394.
  • Spellman PT, Sherlock G, Zhang MQ, . Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9: 3273–3297.
  • Côte P, Hogues H, Whiteway M. Transcriptional analysis of the Candida albicans cell cycle. Mol Biol Cell 2009; 20: 3363–3373.
  • Chen-Wu JL, Bowen AR, Robbins PW. Expression of chitin synthase genes during yeast and hyphal growth phases of Candida albicans. Mol Microbiol 1992; 6: 497–502.
  • Sudoh M, Nagahashi S, Doi M, . Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol Genet Genomics 1993; 241: 351–358.
  • Munro CA, Selvaggini S, de Bruijn I, . The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 2007; 63: 1399–1413.
  • Wang Q, Liu H, Szaniszlo PJ. Compensatory expression of five chitin synthase genes, a response to stress stimuli, in Wangiella (Exophiala) dermatitidis, a melanized fungal pathogen of humans. Microbiology 2002; 148: 2811–2817.
  • Bermejo C, Rodríguez E, García R, . The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell 2008; 19: 1113–1124.
  • García R, Rodríguez-Peña JM, Bermejo C, Nombela C, Arroyo J. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. J Biol Chem 2009; 284: 10901–10911.
  • Lenardon MD, Lesiak I, Munro CA, Gow NAR. Dissection of the Candida albicans chass 1 chitin synthase promoters. Mol Genet Genomics 2009; 281: 459–471.
  • Walker LA, Munro CA, de Bruijn I, . Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Path 2008; 4: 1–12.
  • Fortwendel JR, Juvvadi PR, Perfect BZ, . Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob Agents Chemother 2010; 54: 1555–1563.
  • Choi W-J, Santos B, Durán A, Cabib E. Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol Cell Biol 1994; 14: 7685–7694.
  • Hasilik A. Inactivation of chitin synthase in Saccharomyces cerevisiae. Arch Microbiol 1974; 101: 295–301.
  • Uchida Y, Shimmi O, Sudoh M, Arisawa M, Yamada-Okabe H. Characterization of chitin synthase 2 of Saccharomyces cerevisiae II: both full size and processes enzymes are active for chitin synthesis. J Biochem, Tokyo 1996; 119: 659–666.
  • Martínez-Rucobo FW, Eckhardt-Strelau L, Terwisscha van Scheltinga AC. Yeast chitin synthase 2 activity is modulated by proteolysis and phosphorylation. Biochem J 2009; 417: 547–554.
  • Ketela T, Green R, Bussey H. Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol 1999; 181: 3330–3340.
  • Kalebina TS, Farkaš V, Laurinavichiute DK, . Deletion of BGL2 results in a increased chitin level in the cell wall of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2003; 84: 179–184.
  • Bartnicki-Garcia S, Lippman E. Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 1969; 165: 302–304.
  • Riquelme M, Bartnicki-García S, González-Prieto JM, . Spitzenkörper Localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot Cell 2007; 6: 1853–1864.
  • Sánchez-León E, Verdín-Ramos JA, Freitag M, . Traffic of chitin synthase 1 (CHS-1) to the Spitzenkörper and developing septa in hyphae of Neurospora crassa: actin dependence and evidence of distinct microvesicle populations. Eukaryot Cell 2011: in press.
  • Bartnicki-Garcia S, Hergert F, Gierz G. Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 1989; 153: 46–57.
  • Bartnicki-Garcia S, Bartnicki DD, Gierz G, López-Franco R, Bracker CE. Evidence that Spitzenkörper behaviour determines the shape of fungal hyphae: a test of the hyphoid model. Exp Mycol 1995; 19: 153–159.
  • Chuang JS, Schekman RW. Differential trafficking and timed localizations of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 1996; 135: 597–610.
  • VerPlank L, Li R. Cell cycle-regulated trafficking of Chs2 controls actomyosin ring stability during cytokinesis. Mol Biol Cell 2005; 16: 2529–2543.
  • Sietsma JH, Din AB, Ziv V, Sjollema KA, Yarden O. The localization of chitin synthase in membranous vesicles (chitosomes) in Neurospora crassa. Microbiology 1996; 142: 1591–1596.
  • Santos B, Snyder M. Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J Cell Biol 1997; 136: 95–110.
  • Ortiz D, Novick PJ. Ypt32p regulates the translocation of Chs3p from an internal pool to the plasma membrane. Eur J Cell Biol 2006; 85: 107–116.
  • Valdivia RH, Schekman RW. The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci USA 2003; 100: 10287–10292.
  • Lenardon MD, Milne SA, mORA-Montes HM, . Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. J Cell Sci 2010; 123: 2199–2206.
  • Trilla JA, Durán A, Roncero C. Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 1999; 145: 1153–1163.
  • Sanz M, Carrano L, Jiménez C, . Candida albicans strains deficient in CHS7, a key regulator of chitin synthase III, exhibit morphogenetic alterations and attenuated virulence. Microbiology 2005; 151: 2623–2636.
  • Lam KKY, Davey M, Sun B, . Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J Cell Biol 2006; 174: 19–25.
  • Ziman M, Chuang JS, Tsung M, Hamamoto S, Schekman RW. Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae. Mol Biol Cell 1998; 9: 1565–1576.
  • Santos B, Durán A, Valdivieso MH. CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17: 2485–2496.
  • Ziman M, Chuang JS, Schekman RW. Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 1996; 7: 1909–1919.
  • Trautwein M, Schindler C, Gauss R, . Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. EMBO J 2006; 25: 943–954.
  • Sanchatjate S, Schekman RW. Chs5/6 complex: a multiprotein complex that interacts with and conveys chitin synthase III from the Trans-Golgi network to the cell surface. Mol Biol Cell 2006; 17: 4157–4166.
  • Schorr M, Then A, Tahirovic S, Hug N, Mayinger P. The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase. Curr Biol 2001; 11: 1421–1426.
  • Choi W-J, Sburlati A, Cabib E. Chitin synthase 3 from yeast has zymogenic properties that depend on both the CAL1 and the CAL3 genes. Proc Natl Acad Sci USA 1994; 91: 4727–4730.
  • Takita MA, Castilho-Valavicius B. Absence of cell wall chitin in Saccharomyces cerevisiae leads to resistance to Kluyveromyces lactis killer toxin. Yeast 1993; 9: 589–598.
  • Kawamoto S, Sasaki T, Itahashi S, Hatsuyama Y, Ohno T. A mutant allele skt5 affecting protoplast regeneration and killer toxin resistance has double mutations in its wild-type structural gene in Saccharomyces cerevisiae. Biosci, Biotechnol, Biochem 1993; 57: 1391–1393.
  • Trilla JA, Cos T, Durán A, Roncero C. Characterization of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 1997; 13: 795–807.
  • Ono N, Yabe T, Sudoh M, . The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein-protein interaction. Microbiology 2000; 146: 385–391.
  • Reyes A, Sanz M, Durán A, Roncero C. Chitin synthase III requires Chs4p-dependent translocation of Chs3p into the plasma membrane. J Cell Sci 2007; 120: 1998–2009.
  • Grabińska KA, Magnelli P, Robbins PW. Prenylation of Saccharomyces cerevisiae Chs4p affects chitin synthase III activity and chitin chain length. Eukaryot Cell 2007; 6: 328–336.
  • DeMarini DJ, Adams AEM, Fares H, . A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 1997; 139: 75–93.
  • Kozubowski L, Panek H, Rosenthal A, . A Bni4-Glc7 phosphatase complex that recruits chitin synthase to the site of bud emergence. Mol Biol Cell 2003; 14: 26–39.
  • Larson JR, Bharucha JP, Ceaser S, . Protein phosphatase type 1 directs chitin synthesis at the bud neck in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19: 3040–3051.
  • Sanz M, Trilla JA, Durán A, Roncero C. Control of chitin synthesis through Shc1p, a functional homologue of Chs4p specifically induced during sporulation. Mol Microbiol 2002; 43: 1183–1195.
  • Iwamoto MA, Fairclough SR, Rudge SA, Engebrecht J. Saccharomyces cerevisiae Sps1p regulates trafficking of enzymes required for spore wall synthesis. Eukaryot Cell 2005; 4: 536–544.
  • Galagan J, Calvo S, Borkovich K, . The genome sequence of the filamentous fungus Neurospora crassa. Nature 2003; 422: 859–868.
  • Loftus BJ, Fung E, Roncaglia P, . The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 2005; 307: 1321–1324.
  • Nierman W, Pain A, Anderson M, . Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 2005; 438: 1151–1156.
  • Fujiwara M, Ichinomiya M, Motoyama T, . Evidence that the Aspergillus nidulans class I and class II chitin synthase genes, chsC and chsA, share critical roles in hyphal wall integrity and conidiophore development. J Biochem, Tokyo 2000; 127: 359–366.
  • Ichinomiya M, Yamada E, Yamashita S, Ohta A, Horiuchi H. Class I and class II chitin synthases are involved in septum formation in the filamentous fungus Aspergillus nidulans. Eukaryot Cell 2005; 4: 1125–1136.
  • Zhang G, Kashimshetty R, Ng KE, Tan HB, Yeong FM. Exit from mitosis triggers Chs2p transport from the endoplasmic reticulum to mother-daughter neck via the secretory pathway in budding yeast. J Cell Biol 2006; 174: 207–220.
  • Teh EM, Chai CC, Yeong FM. Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation sites. Cell Cycle 2009; 15: 2964–2974.
  • Takeshita N, Ohta A, Horiuchi H. CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 2005; 16: 1961–1970.
  • Abramczyk D, Park C, Szaniszlo PJ. Cytolocalization of the class V chitin synthase in the yeast, hyphal and sclerotic morphotypes of Wangiella (Exophiala) dermatitidis. Fungal Genet Biol 2009; 46: 28–41.
  • Tsuizaki M, Takeshita N, Ohta A, Horiuchi H. Myosin motor-like domain of the class VI chitin synthase CsmB is essential to its function in Aspergillus nidulans. Biosci, Biotechnol, Biochem 2009; 73: 1163–1167.
  • Treitschke S, Doehlemann G, Schuster M, Steinberg G. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Plant Cell 2010; 22: 2476–2494.
  • Odds FC, Brown AJP, Gow NAR. Antifungal agents: mechanisms of action. Trends Microbiol 2003; 11: 272–279.
  • Mellado E, Aufauvre-Brown A, Specht CA, Robbins PW, Holden DW. A multigene family related to chitin synthase genes of yeast in the opportunistic pathogen Aspergillus fumigatus. Mol Gen Genet 1995; 246: 353–359.
  • Mellado E, Dubreucq G, Mol P, . Cell wall biogenesis in a double chitin synthase mutant (chsG-/chsE-) of Aspergillus fumigatus. Fungal Genet Biol 2003; 38: 98–109.
  • Latgé JP, Mouyna I, Tekaia F, . Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med Mycol 2005; 43: 15–22.
  • Culp DW, Dodge CL, Miao Y, Sag-Ozkal D, Borgia PT. The chsA gene from Aspergillus nidulans is necessary for maximal conidiation. FEMS Microbiol Lett 2000; 182: 349–353.
  • Ichinomiya M, Horiuchi H, Ohta A. Different functions of the class I and class II chitin synthase genes, chsC and chsA, are revealed by repression of chsB expression in Aspergillus nidulans. Curr Genet 2002; 42: 51–58.
  • Ichinomiya M, Ohta A, Horiuchi H. Expression of asexual developmental regulator gene abaA is affected in the double mutants of classes I and II chitin synthase genes, chsC and chsA, of Aspergillus nidulans. Curr Genet 2005; 48: 171–183.
  • Lee JI, Choi JH, Park BC, . Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. Fungal Genet Biol 2004; 41: 635–646.
  • Park B-C, Park Y-H, Park H-M. Activation of chsC transcription by AbaA during asexual development of Aspergillus nidulans. FEMS Microbiol Lett 2003; 220: 241–246.
  • Yamada E, Ichinomiya M, Ohta A, Horiuchi H. The class V chitin synthase gene csmA is crucial for the growth of the chsA chsC double mutant in Aspergillus nidulans. Biosci, Biotechnol, Biochem 2005; 69: 87–97.
  • Lee JI, Yu YM, Rho YM, . Differential expression of the chsE gene encoding a chitin synthase of Aspergillus nidulans in response to developmental status and growth conditions. FEMS Microbiol Lett 2005; 249: 121–129.
  • Horiuchi H. Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation. Med Mycol 2009; 47: S47–52.
  • Fujiwara M, Horiuchi H, Ohta A, Takagi M. A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem Biophys Res Commun 1997; 236: 75–78.
  • Takeshita N, Ohta A, Horiuchi H. csmA, a gene encoding a class V chitin synthase with a myosin motor-like domain of Aspergillus nidulans, is translated as a single polypeptide and regulated in response to osmotic conditions. Biochem Biophys Res Commun 2002; 298: 103–109.
  • Au-Young J, Robbins PW. Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol 1990; 4: 197–207.
  • Wang Z, Szaniszlo PJ. Characterization of WdChs3p, a class III chitin synthase, of Wangiella (Exophiala) dermatitidis, overexpressed in Saccharomyces cerevisiae. Med Mycol 2002; 40: 283–289.
  • Liu H, Szaniszlo PJ. Transcription and expression analyses of WdCHS5, which encodes a class V chitin synthase with a myosin motor-like domain in Wangiella (Exophiala) dermatitidis. FEMS Microbiol Lett 2007; 276: 99–105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.