Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 117, 2011 - Issue 3
403
Views
28
CrossRef citations to date
0
Altmetric
Research Article

G Protein-coupled receptor kinase 2 (GRK2): A novel modulator of insulin resistance

, , , , , , & show all
Pages 125-130 | Received 11 Apr 2011, Accepted 26 Apr 2011, Published online: 26 May 2011

References

  • Anis Y, Leshem O, Reuveni H, Wexler I, Ben Sasson R, Yahalom B, Laster M, Raz I, Ben Sasson S, Shafrir E, Ziv E. (2004). Antidiabetic effect of novel modulating peptides of G-protein-coupled kinase in experimental models of diabetes. Diabetologia 47:1232–44.
  • Biddinger SB, Kahn CR. (2006). From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–58.
  • Boura-Halfon S, Zick Y. (2009). Serine kinases of insulin receptor substrate proteins. Vitam Horm 80:313–49.
  • Cipolletta E, Campanile A, Santulli G, Sanzari E, Leosco D, Campiglia P, Trimarco B, Iaccarino G. (2009). The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc Res 84:407–15.
  • Dalle S, Imamura T, Rose DW, Worrall DS, Ugi S, Hupfeld CJ, Olefsky JM. (2002). Insulin induces heterologous desensitization of G-protein-coupled receptor and insulin-like growth factor I signaling by downregulating beta-arrestin-1. Mol Cell Biol 22:6272–85.
  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. (2007). Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510.
  • Dorn 2nd GW. (2009). GRK mythology: G-protein receptor kinases in cardiovascular disease. J Mol Med 87:455–63.
  • Eijkelkamp N, Heijnen CJ, Willemen HL, Deumens R, Joosten EA, Kleibeuker W, den Hartog IJ, van Velthoven CT, Nijboer C, Nassar MA, et al. (2010). GRK2: a novel cell-specific regulator of severity and duration of inflammatory pain. J Neurosci 30:2138–49.
  • Fernandez-Veledo S, Nieto-Vazquez I, de Castro J, Ramos MP, Bruderlein S, Moller P, Lorenzo M. (2008). Hyperinsulinemia induces insulin resistance on glucose and lipid metabolism in a human adipocytic cell line: paracrine interaction with myocytes. J Clin Endocrinol Metab 93:2866–76.
  • Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Jurado-Pueyo M, Zalba G, Diez J, Murga C, Fernandez-Veledo S, Mayor F Jr, Lorenzo M. (2010). G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity. Diabetes 59:2407–17.
  • Guilherme A, Virbasius JV, Puri V, Czech MP. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–77.
  • Hoehn KL, Hohnen-Behrens C, Cederberg A, Wu LE, Turner N, Yuasa T, Ebina Y, James DE. (2008). IRS1-independent defects define major nodes of insulin resistance. Cell Metab 7:421–33.
  • Hupfeld CJ, Dalle S, Olefsky JM. (2003). Beta-Arrestin 1 down-regulation after insulin treatment is associated with supersensitization of beta 2 adrenergic receptor Galpha s signaling in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 100:161–6.
  • Hupfeld CJ, Olefsky JM. (2007). Regulation of receptor tyrosine kinase signaling by GRKs and beta-arrestins. Annu Rev Physiol 69:561–77.
  • Iaccarino G, Barbato E, Cipolletta E, De Amicis V, Margulies KB, Leosco D, Trimarco B, Koch WJ. (2005). Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur Heart J 26:1752–8.
  • Imamura T, Vollenweider P, Egawa K, Clodi M, Ishibashi K, Nakashima N, Ugi S, Adams JW, Brown JH, Olefsky JM. (1999). G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol Cell Biol 19:6765–74.
  • Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross J, Jr., Lefkowitz RJ, Caron MG, Giros B. (1996). Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA 93:12974–9.
  • Jimenez-Sainz MC, Murga C, Kavelaars A, Jurado-Pueyo M, Krakstad BF, Heijnen CJ, Mayor F, Jr., Aragay AM. (2006). G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Mol Biol Cell 17:25–31.
  • Kanzaki M, Watson RT, Artemyev NO, Pessin JE. (2000). The trimeric GTP-binding protein (G(q)/G(11)) alpha subunit is required for insulin-stimulated GLUT4 translocation in 3T3L1 adipocytes. J Biol Chem 275:7167–75.
  • Kleibeuker W, Jurado-Pueyo M, Murga C, Eijkelkamp N, Mayor F, Jr., Heijnen CJ, Kavelaars A. (2008). Physiological changes in GRK2 regulate CCL2-induced signaling to ERK1/2 and Akt but not to MEK1/2 and calcium. J Neurochem 104:979–92.
  • Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ. (2009). Arrestin development:emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 17:443–58.
  • Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC. (2005). A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med 11:952–8.
  • Luan B, Zhao J, Wu H, Duan B, Shu G, Wang X, Li D, Jia W, Kang J, Pei G. (2009). Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature 457:1146–9.
  • Luttrell LM, Gesty-Palmer D. (2010). Beyond desensitization:physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62:305–30.
  • Mariggio S, Garcia-Hoz C, Sarnago S, De Blasi A, Mayor F, Jr., Ribas C. (2006). Tyrosine phosphorylation of G-protein-coupled-receptor kinase 2 (GRK2) by c-Src modulates its interaction with Galphaq. Cell Signal 18:2004–12.
  • Molnar C, Holguin H, Mayor F, Jr., Ruiz-Gomez A, de Celis JF. (2007). The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc Natl Acad Sci USA 104:7963–8.
  • Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Rondinone CM, Valverde AM, Lorenzo M. (2007). Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-alpha-induced insulin resistance. Diabetes 56:404–13.
  • Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Lorenzo M. (2008). Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 57:3211–21.
  • Penela P, Ribas C, Mayor F. Jr (2003). Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal 15:973–81.
  • Penela P, Murga C, Ribas C, Tutor AS, Peregrin S, Mayor F. Jr (2006). Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res 69:46–56.
  • Penela P, Murga C, Ribas C, Salcedo A, Jurado-Pueyo M, Rivas V, Aymerich I, Mayor F. Jr (2008a). G protein-coupled receptor kinase 2 (GRK2) in migration and inflammation. Arch Physiol Biochem 114:195–200.
  • Penela P, Ribas C, Aymerich I, Eijkelkamp N, Barreiro O, Heijnen CJ, Kavelaars A, Sanchez-Madrid F, Mayor F. Jr (2008b). G protein-coupled receptor kinase 2 positively regulates epithelial cell migration. Embo J 27:1206–18.
  • Penela P, Murga C, Ribas C, Lafarga V, Mayor F. Jr (2010a). The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br J Pharmacol 160:821–32.
  • Penela P, Rivas V, Salcedo A, Mayor F. Jr (2010b). G protein-coupled receptor kinase 2 (GRK2) modulation and cell cycle progression. Proc Natl Acad Sci USA 107:1118–23.
  • Peregrin S, Jurado-Pueyo M, Campos PM, Sanz-Moreno V, Ruiz-Gomez A, Crespo P, Mayor F Jr, Murga C. (2006). Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr Biol 16:2042–7.
  • Premont RT, Gainetdinov RR. (2007). Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–34.
  • Ramos-Ruiz R, Penela P, Penn RB, Mayor F. Jr (2000). Analysis of the human G protein-coupled receptor kinase 2 (GRK2) gene promoter: regulation by signal transduction systems in aortic smooth muscle cells. Circulation 101:2083–9.
  • Ribas C, Penela P, Murga C, Salcedo A, Garcia-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F Jr. (2007). The G protein-coupled receptor kinase (GRK) interactome:role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768:913–22.
  • Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, Barrett T, Kim JK, Davis RJ. (2008). A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322:1539–43.
  • Salcedo A, Mayor F Jr, Penela P. (2006). Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. Embo J 25:4752–62.
  • Sarnago S, Elorza A, Mayor F. Jr (1999). Agonist-dependent phosphorylation of the G protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase. J Biol Chem 274:34411–16.
  • Shahid G, Hussain T. (2007). GRK2 negatively regulates glycogen synthesis in mouse liver FL83B cells. J Biol Chem 282:20612–20.
  • Trivedi M, Lokhandwala MF. (2005). Rosiglitazone restores renal D1A receptor-Gs protein coupling by reducing receptor hyperphosphorylation in obese rats. Am J Physiol Renal Physiol 289:F298–304
  • Usui I, Imamura T, Huang J, Satoh H, Olefsky JM. (2003). Cdc42 is a Rho GTPase family member that can mediate insulin signaling to glucose transport in 3T3-L1 adipocytes. J Biol Chem 278:13765–74.
  • Usui I, Imamura T, Satoh H, Huang J, Babendure JL, Hupfeld CJ, Olefsky JM. (2004). GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation. Embo J 23:2821–9.
  • Usui I, Imamura T, Babendure JL, Satoh H, Lu JC, Hupfeld CJ, Olefsky JM. (2005). G protein-coupled receptor kinase 2 mediates endothelin-1-induced insulin resistance via the inhibition of both Galphaq/11 and insulin receptor substrate-1 pathways in 3T3-L1 adipocytes. Mol Endocrinol 19:2760–68.
  • Vroon A, Heijnen CJ, Kavelaars A. (2006). GRKs and arrestins: regulators of migration and inflammation. J Leukoc Biol 80:1214–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.