157
Views
2
CrossRef citations to date
0
Altmetric
Research Reports

Homozygosity mapping in an anophthalmic pedigree provides evidence of additional genetic heterogeneity

, , , , &
Pages 208-220 | Received 12 Jul 2011, Accepted 03 Dec 2011, Published online: 24 Jan 2012

REFERENCES

  • O’Rahilly R. The prenatal development of the human eye. Exp Eye Res 1975;21(2):93–112.
  • Graw J. Eye development. Curr Top Dev Biol 2010;90:343–386.
  • Guercio JR, Martyn LJ. Congenital malformations of the eye and orbit. Otolaryngol Clin North Am 2007;40(1):113–140, vii.
  • Fitzpatrick DR, van Heyningen V. Developmental eye disorders. Curr Opin Genet Dev 2005;15(3):348–353.
  • Morrison D, FitzPatrick D, Hanson I, Williamson K, van Heyningen V, Fleck B, Jones I, Chalmers J, Campbell H. National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J Med Genet 2002;39(1):16–22.
  • Kallen B, Robert E, Harris J. The descriptive epidemiology of anophthalmia and microphthalmia. Int J Epidemiol 1996;25(5):1009–1016.
  • Graw J. The genetic and molecular basis of congenital eye defects. Nat Rev Genet 2003;4(11):876–888.
  • Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis 2007;2:47.
  • Hornby SJ, Gilbert CE, Rahi JK, Sil AK, Xiao Y, Dandona L, Foster A. Regional variation in blindness in children due to microphthalmos, anophthalmos and coloboma. Ophthalmic Epidemiol 2000;7(2):127–138.
  • Kallen B, Tornqvist K. The epidemiology of anophthalmia and microphthalmia in Sweden. Eur J Epidemiol 2005;20(4):345–350.
  • Chang L, Blain D, Bertuzzi S, Brooks BP. Uveal coloboma: clinical and basic science update. Curr Opin Ophthalmol 2006;17(5):447–470.
  • Gregory-Evans CY, Williams MJ, Halford S, Gregory-Evans K. Ocular coloboma: a reassessment in the age of molecular neuroscience. J Med Genet 2004;41(12):881–891.
  • Miller MT. Ocular teratology. Observations, speculations, questions, principles reaffirmed. Eye (Lond) 1992;6(Pt 2):177–180.
  • Givens KT, Lee DA, Jones T, Ilstrup DM. Congenital rubella syndrome: ophthalmic manifestations and associated systemic disorders. Br J Ophthalmol 1993;77(6):358–363.
  • Prober CG, Gershon AA, Grose C, McCracken GH, Jr., Nelson JD. Consensus: varicella-zoster infections in pregnancy and the perinatal period. Pediatr Infect Dis J 1990;9(12):865–869.
  • Frenkel LD, Keys MP, Hefferen SJ, Rola-Pleszczynski M, Bellanti JA. Unusual eye abnormalities associated with congenital cytomegalovirus infection. Pediatrics 1980;66(5):763–766.
  • Hornby SJ, Ward SJ, Gilbert CE. Eye birth defects in humans may be caused by a recessively-inherited genetic predisposition to the effects of maternal vitamin A deficiency during pregnancy. Med Sci Monit 2003;9(11):HY23–26.
  • Papst W. [Thalidomide and congenital abnormalities of the eye]. Ber Zusammenkunft Dtsch Ophthalmol Ges 1964;65:209–215.
  • Kouassi FX, Koffi KV, Safede K, Cochard C, Cochener B. [Congenital anophthalmias: a case of trisomy 13]. J Fr Ophtalmol 2006;29(4): e10.
  • Parker SE, Mai CT, Canfield MA, et al. Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A Clin Mol Teratol 2010;88(12):1008–1016.
  • Morle L, Bozon M, Zech JC, et al. A locus for autosomal dominant colobomatous microphthalmia maps to chromosome 15q12-q15. Am J Hum Genet 2000;67(6):1592–1597.
  • Bessant DA, Anwar K, Khaliq S, et al. Phenotype of autosomal recessive congenital microphthalmia mapping to chromosome 14q32. Br J Ophthalmol 1999;83(8):919–922.
  • Fryns JP. Autosomal dominant simple microphthalmos: incomplete penetrance and variable expression in a large family. J Med Genet 1995;32(4):326.
  • Bessant DA, Khaliq S, Hameed A, Anwar K, Mehdi SQ, Payne AM, Bhattacharya SS. A locus for autosomal recessive congenital microphthalmia maps to chromosome 14q32. Am J Hum Genet 1998;62(5):1113–1116.
  • Graham CA, Redmond RM, Nevin NC. X-linked clinical anophthalmos. Localization of the gene to Xq27-Xq28. Ophthalmic Paediatr Genet 1991;12(1):43–48.
  • Online Mendelian Inheritance in Man, OMIM. Accessed August 24, 2010 from: http://www.ncbi.nlm.nih.gov/omim/
  • Fantes J, Ragge NK, Lynch SA, et al. Mutations in SOX2 cause anophthalmia. Nat Genet 2003;33(4):461–463.
  • Ragge NK, Brown AG, Poloschek CM, et al. Heterozygous mutations of OTX2 cause severe ocular malformations. Am J Hum Genet 2005;76(6):1008–1022.
  • Azuma N, Yamaguchi Y, Handa H, Hayakawa M, Kanai A, Yamada M. Missense mutation in the alternative splice region of the PAX6 gene in eye anomalies. Am J Hum Genet 1999;65(3):656–663.
  • Ferda Percin E, Ploder LA, et al. Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 2000;25(4):397–401.
  • Bakrania P, Efthymiou M, Klein JC, et al. Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 2008;82(2):304–319.
  • Vissers LE, van Ravenswaaij CM, Admiraal R, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004;36(9):955–957.
  • Voronina VA, Kozhemyakina EA, O’Kernick CM, et al. Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea. Hum Mol Genet 2004;13(3):315–322.
  • Asai-Coakwell M, French CR, Berry KM, et al. GDF6, a novel locus for a spectrum of ocular developmental anomalies. Am J Hum Genet 2007;80(2):306–315.
  • Ye M, Berry-Wynne KM, Asai-Coakwell M, et al. Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 2010;19(2):287–98.
  • Reis LM, Tyler RC, Schneider A, Bardakjian T, Stoler JM, Melancon SB, Semina EV. FOXE3 plays a significant role in autosomal recessive microphthalmia. Am J Med Genet A 2010;152A(3):582–590.
  • Okada I, Hamanoue H, Terada K, et al. SMOC1 is essential for ocular and limb development in humans and mice. Am J Hum Genet 2011;88(1):30–41.
  • Antonarakis SE, Beckmann JS. Mendelian disorders deserve more attention. Nat Rev Genet 2006;7(4):277–282.
  • Zucchero TM, Cooper ME, Maher BS, et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. N Engl J Med 2004;351(8):769–880.
  • Weeks DE, Lange K. The affected-pedigree-member method of linkage analysis. Am J Hum Genet 1988;42(2):315–326.
  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008;9(5):356–369.
  • Lander ES, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 1987;236(4808):1567–1570.
  • Collins A. Approaches to the identification of susceptibility genes. Parasite Immunol 2009;31(5):225–233.
  • Ott J. Analysis of Human Genetic Linkage. Baltimore, MD: Johns Hopkins University Press, 1991.
  • Morrow EM, Yoo SY, Flavell SW, et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 2008;321(5886):218–223.
  • den Hollander AI, Lopez I, Yzer S, et al. Identification of novel mutations in patients with Leber congenital amaurosis and juvenile RP by genome-wide homozygosity mapping with SNP microarrays. Invest Ophthalmol Vis Sci 2007;48(12):5690–5698.
  • Littink KW, Koenekoop RK, van den Born LI, et al. Homozygosity mapping in patients with cone-rod dystrophy: novel mutations and clinical characterizations. Invest Ophthalmol Vis Sci 2010;51(11):5943–5951.
  • Iseri SU, Wyatt AW, Nurnberg G, et al. Use of genome-wide SNP homozygosity mapping in small pedigrees to identify new mutations in VSX2 causing recessive microphthalmia and a semidominant inner retinal dystrophy. Hum Genet 2010;128(1):51–60.
  • Pereiro I, Valverde D, Pineiro-Gallego T, Baiget M, Borrego S, Ayuso C, Searby C, Nishimura D. New mutations in BBS genes in small consanguineous families with Bardet-Biedl syndrome: detection of candidate regions by homozygosity mapping. Mol Vis 2010;16:137–143.
  • Thiadens AA, den Hollander AI, Roosing S, et al. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 2009;85(2):240–247.
  • Paisan-Ruiz C, Scopes G, Lee P, Houlden H. Homozygosity mapping through whole genome analysis identifies a COL18A1 mutation in an Indian family presenting with an autosomal recessive neurological disorder. Am J Med Genet B Neuropsychiatr Genet 2009;150B(7):993–997.
  • Knight HM, Maclean A, Irfan M, et al. Homozygosity mapping in a family presenting with schizophrenia, epilepsy and hearing impairment. Eur J Hum Genet 2008;16(6):750–758.
  • Garshasbi M, Motazacker MM, Kahrizi K, et al. SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly. Hum Genet 2006;118(6):708–715.
  • Fiskerstrand T, Houge G, Sund S, Scheie D, Leh S, Boman H, Knappskog PM. Identification of a gene for renal-hepatic-pancreatic dysplasia by microarray-based homozygosity mapping. J Mol Diagn 2010;12(1):125–131.
  • Schraders M, Lee K, Oostrik J, et al. Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet 2010;86(2):138–147.
  • Walsh T, Shahin H, Elkan-Miller T, et al. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet 2010;87(1):90–94.
  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81(3):559–575.
  • Lindner TH, Hoffmann K. easyLINKAGE: a PERL script for easy and automated two-/multi-point linkage analyses. Bioinformatics 2005;21(3):405–407.
  • UniGene. Available from: http://www.ncbi.nlm.nih.gov/omim/
  • HomoloGene. Accessed August 24, 2010 from: http://www.ncbi.nlm.nih.gov/homologene
  • MGI- Mouse Genome Informatics. Accessed August 24, 2010 from: http://www.informatics.jax.org
  • The Zebrafish Model Organism Database. Accessed August 24, 2010 from: http://zfin.org
  • A Database of Drosophila Genes & Genomes. Accessed August 24, 2010 from: http://flybase.org
  • Broman KW, Weber JL. Long homozygous chromosomal segments in reference families from the centre d’Etude du polymorphisme humain. Am J Hum Genet 1999;65(6):1493–1500.
  • Carothers AD, Rudan I, Kolcic I, et al. Estimating human inbreeding coefficients: comparison of genealogical and marker heterozygosity approaches. Ann Hum Genet 2006;70(Pt 5):666–676.
  • Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet 2007;39(7 Suppl.):S43–47.
  • Deng Q, Huang S. PRDM5 is silenced in human cancers and has growth suppressive activities. Oncogene 2004;23(28):4903–4910.
  • Schneider R, Bannister AJ, Kouzarides T. Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci 2002;27(8):396–402.
  • Nguyen M, Arnheiter H. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 2000;127(16):3581–91.
  • McAvoy JW, Chamberlain CG, de Iongh RU, Richardson NA, Lovicu FJ. The role of fibroblast growth factor in eye lens development. Ann NY Acad Sci 1991;638:256–274.
  • Guilarducci-Ferraz CV, da Silva GM, Torres PM, Dos Santos AA, de Araujo EG. The increase in retinal cells proliferation induced by FGF2 is mediated by tyrosine and PI3 kinases. Neurochem Res 2008;33(5):754–764.
  • Tanaka T, Saika S, Ohnishi Y, et al. Fibroblast growth factor 2: roles of regulation of lens cell proliferation and epithelial-mesenchymal transition in response to injury. Mol Vis 2004;10:462–467.
  • Miano MG, Jacobson SG, Carothers A, et al. Pitfalls in homozygosity mapping. Am J Hum Genet 2000;67(5):1348–1351.
  • Wong FL, Cantor RM, Rotter JI. Sample-size considerations and strategies for linkage analysis in autosomal recessive disorders. Am J Hum Genet 1986;39(1):25–37.
  • Mamanova L, Coffey AJ, Scott CE, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods 2010;7(2):111–118.
  • Rehman AU, Morell RJ, Belyantseva IA, et al. Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet 2010;86(3):378–388.
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008;26(10):1135–1145.
  • Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet 2007;39(12):1522–1527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.