581
Views
15
CrossRef citations to date
0
Altmetric
Review

Bestrophin 1 – Phenotypes and Functional Aspects in Bestrophinopathies

, , &
Pages 193-212 | Received 26 Sep 2012, Accepted 26 Oct 2013, Published online: 12 Dec 2013

References

  • Best F. Über eine hereditäre Maculaaffektion. Z Augenheik 1905;13:199–212
  • Nordstrom S, Barkman Y. Hereditary maculardegeneration (HMD) in 246 cases traced to one gene-source in central Sweden. Hereditas 1977;84:163–176
  • Forsman K, Graff C, Nordstrom S, et al. The gene for Best’s macular dystrophy is located at 11q13 in a Swedish family. Clin Genet 1992;42:156–159
  • Stone EM, Kimura AE, Folk JC, et al. Genetic linkage of autosomal dominant neovascular inflammatory vitreoretinopathy to chromosome 11q13. Hum Mol Genet 1992;1:685–689
  • Petrukhin K, Koisti MJ, Bakall B, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet 1998;19:241–247
  • Marquardt A, Stöhr H, Passmore LA, et al. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 1998;7:1517–1525
  • Esumi N, Oshima Y, Li Y, et al. Analysis of the VMD2 promoter and implication of E-box binding factors in its regulation. J Biol Chem 2004;279:19064–19073
  • Esumi N, Kachi S, Campochiaro PA, et al. VMD2 promoter requires two proximal E-box sites for its activity in vivo and is regulated by the MITF-TFE family. J Biol Chem 2007;282:1838–1850
  • Masuda T, Esumi N. SOX9, through interaction with microphthalmia-associated transcription factor (MITF) and OTX2, regulates BEST1 expression in the retinal pigment epithelium. J Biol Chem 2010;285:26933–26944
  • Marmorstein AD, Marmorstein LY, Rayborn M, et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA 2000;97:12758–12763
  • Strauss O, Neussert R, Muller C, et al. A potential cytosolic function of bestrophin-1. Adv Exp Med Biol 2012;723:603–610
  • Barro-Soria R, Aldehni F, Almaca J, et al. ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Arch 2010;459:485–497
  • Singh R, Shen W, Kuai D, et al. iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet 2013;22:593–607
  • Thompson JL, Shuttleworth TJ. A plasma membrane-targeted cytosolic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel. Channels (Austin) 2012;6:370–378
  • Hagen AR, Barabote RD, Saier MH. The bestrophin family of anion channels: identification of prokaryotic homologues. Mol Membr Biol 2005;22:291–302
  • Krämer F, Stöhr H, Weber BH. Cloning and characterization of the murine Vmd2 RFP-TM gene family. Cytogenet Genome Res 2004;105:107–114
  • Milenkovic VM, Rivera A, Horling F, et al. Insertion and topology of normal and mutant bestrophin-1 in the endoplasmic reticulum membrane. J Biol Chem 2007;282:1313–1321
  • Stanton JB, Goldberg AF, Hoppe G, et al. Hydrodynamic properties of porcine bestrophin-1 in Triton X-100. Biochim Biophys Acta 2006;1758:241–247
  • Sun H, Tsunenari T, Yau KW, et al. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 2002;99:4008–4013
  • Tsunenari T, Sun H, Williams J, et al. Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 2003;278:41114–41125
  • Stöhr H, Marquardt A, Nanda I, et al. Three novel human VMD2-like genes are members of the evolutionary highly conserved RFP-TM family. Eur J Hum Genet 2002;10:281–284
  • Gass JDM. Heredodystrophic disorders affecting the pigment epithelium and retina. Steroscopic atlas of macular disease – diagnosis and treatment. St. Louis: Mosby, 1997: 303–436
  • Wabbels B, Preising MN, Kretschmann U, et al. Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 2006;244:1453–1466
  • Booij JC, Boon CJ, van Schooneveld MJ, et al. Course of visual decline in relation to the Best1 genotype in vitelliform macular dystrophy. Ophthalmology 2010;120:809--820
  • Renner AB, Tillack H, Kraus H, et al. Late onset is common in Best macular dystrophy associated with VMD2 gene mutations. Ophthalmology 2005;112:586–592
  • Lotery AJ, Munier FL, Fishman GA, et al. Allelic variation in the VMD2 gene in Best disease and age-related macular degeneration. Invest Ophthalmol Vis Sci 2000;41:1291–1296
  • Krämer F, White K, Pauleikhoff D, et al. Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet 2000;8:286–292
  • O’Gorman S, Flaherty WA, Fishman GA, et al. Histopathologic findings in Best’s vitelliform macular dystrophy. Arch Ophthalmol 1988;106:1261–1268
  • Weingeist TA, Kobrin JL, Watzke RC. Histopathology of Best’s macular dystrophy. Arch Ophthalmol 1982;100:1108–1114
  • Bakall B, Radu RA, Stanton JB, et al. Enhanced accumulation of A2E in individuals homozygous or heterozygous for mutations in BEST1 (VMD2). Exp Eye Res 2007;85:34–43
  • Mullins RF, Kuehn MH, Faidley EA, et al. Differential macular and peripheral expression of bestrophin in human eyes and its implication for best disease. Invest Ophthalmol Vis Sci 2007;48:3372–3380
  • Mullins RF, Oh KT, Heffron E, et al. Late development of vitelliform lesions and flecks in a patient with Best disease: clinicopathologic correlation. Arch Ophthalmol 2005;123:1588–1594
  • Frangieh GT, Green WR, Fine SL. A histopathologic study of Best’s macular dystrophy. Arch Ophthalmol 1982;100:1115–1121
  • Guziewicz KE, Zangerl B, Lindauer SJ, et al. Bestrophin gene mutations cause canine multifocal retinopathy: a novel animal model for best disease. Invest Ophthalmol Vis Sci 2007;48:1959–1967
  • Boon CJ, Theelen T, Hoefsloot EH, et al. Clinical and molecular genetic analysis of best vitelliform macular dystrophy. Retina 2009;29:835–847
  • Abramoff MD, Mullins RF, Lee K, et al. Human photoreceptor outer segments shorten during light adaptation. Invest Ophthalmol Vis Sci 2013;54:3721--3728
  • Kaufman SJ, Goldberg MF, Orth DH, et al. Autosomal dominant vitreoretinochoroidopathy. Arch Ophthalmol 1982;100:272–278
  • Blair NP, Goldberg MF, Fishman GA, et al. Autosomal dominant vitreoretinochoroidopathy (ADVIRC). Br J Ophthalmol 1984;68:2–9
  • Kellner U, Jandeck C, Kraus H, et al. Autosomal dominant vitreoretinochoroidopathy with normal electrooculogram in a German family. Graefes Arch Clin Exp Ophthalmol 1998;236:109–114
  • Yardley J, Leroy BP, Hart-Holden N, et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci 2004;45:3683–3689
  • Burgess R, MacLaren RE, Davidson AE, et al. ADVIRC is caused by distinct mutations in BEST1 that alter pre-mRNA splicing. J Med Genet 2009;46:620–625
  • Goldberg MF, Lee FL, Tso MO, et al. Histopathologic study of autosomal dominant vitreoretinochoroidopathy. Peripheral annular pigmentary dystrophy of the retina. Ophthalmology 1989;96:1736–1746
  • Lafaut BA, Loeys B, Leroy BP, et al. Clinical and electrophysiological findings in autosomal dominant vitreoretinochoroidopathy: report of a new pedigree. Graefes Arch Clin Exp Ophthalmol 2001;239:575–582
  • Traboulsi EI, Payne JW. Autosomal dominant vitreoretinochoroidopathy. Report of the third family. Arch Ophthalmol 1993;111:194–196
  • Oh KT, Vallar C. Central cone dysfunction in autosomal dominant vitreoretinochoroidopathy (ADVIRC). Am J Ophthalmol 2006;141:940–943
  • Han DP, Lewandowski MF. Electro-oculography in autosomal dominant vitreoretinochoroidopathy. Arch Ophthalmol 1992;110:1563–1567
  • Low S, Davidson AE, Holder GE, et al. Autosomal dominant Best disease with an unusual electrooculographic light rise and risk of angle-closure glaucoma: a clinical and molecular genetic study. Mol Vis 2011;17:2272–2282
  • Pollack K, Kreuz FR, Pillunat LE. Morbus Best mit normalem EOG – Fallvorstellung einer familiären Makuladystrophie. Ophthalmologe 2005;102:891–894
  • Vincent A, McAlister C, Vandenhoven C, et al. BEST1-related autosomal dominant vitreoretinochoroidopathy: a degenerative disease with a range of developmental ocular anomalies. Eye (Lond) 2011;25:113–118
  • Davidson AE, Millar ID, Urquhart JE, et al. Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet 2009;85:581–592
  • Davidson AE, Sergouniotis PI, Burgess-Mullan R, et al. A synonymous codon variant in two patients with autosomal recessive bestrophinopathy alters in vitro splicing of BEST1. Mol Vis 2010;16:2916–2922
  • Seddon JM, Afshari MA, Sharma S, et al. Assessment of mutations in the Best macular dystrophy (VMD2) gene in patients with adult-onset foveomacular vitelliform dystrophy, age-related maculopathy, and Bull’s-eye maculopathy. Ophthalmology 2001;108:2060–2067
  • Seddon JM, Sharma S, Chong S, et al. Phenotype and genotype correlations in two Best families. Ophthalmology 2003;110:1724–1731
  • Boon CJ, Klevering BJ, den Hollander AI, et al. Clinical and genetic heterogeneity in multifocal vitelliform dystrophy. Arch Ophthalmol 2007;125:1100–1106
  • Schatz P, Bitner H, Sander B, et al. Evaluation of macular structure and function by OCT and electrophysiology in patients with vitelliform macular dystrophy due to mutations in BEST1. Invest Ophthalmol Vis Sci 2010;51:4754–4765
  • Schatz P, Klar J, Andreasson S, et al. Variant phenotype of Best vitelliform macular dystrophy associated with compound heterozygous mutations in VMD2. Ophthalmic Genet 2006;27:51–56
  • Burgess R, Millar ID, Leroy BP, et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet 2008;82:19–31
  • Kinnick TR, Mullins RF, Dev S, et al. Autosomal recessive vitelliform macular dystrophy in a large cohort of vitelliform macular dystrophy patients. Retina 2011;31:581–595
  • Gerth C, Zawadzki RJ, Werner JS, et al. Detailed analysis of retinal function and morphology in a patient with autosomal recessive bestrophinopathy (ARB). Doc Ophthalmol 2009;3:239–246
  • Guerriero S, Preising MN, Ciccolella N, et al. Autosomal recessive bestrophinopathy: new observations on the retinal phenotype – clinical and molecular report of an Italian family. Ophthalmologica 2011;225:228–235
  • Borman AD, Davidson AE, O’Sullivan J, et al. Childhood-onset autosomal recessive bestrophinopathy. Arch Ophthalmol 2011;129:1088–1093
  • Bitner H, Mizrahi-Meissonnier L, Griefner G, et al. A homozygous frameshift mutation in BEST1 causes the classical form of Best disease in an autosomal recessive mode. Invest Ophthalmol Vis Sci 2011;52:5332–5338
  • Sodi A, Menchini F, Manitto MP, et al. Ocular phenotypes associated with biallelic mutations in BEST1 in Italian patients. Mol Vis 2011;17:3078–3087
  • MacDonald IM, Gudiseva HV, Villanueva A, et al. Phenotype and genotype of patients with autosomal recessive bestrophinopathy. Ophthalmic Genet 2012;33:123–129
  • Pineiro-Gallego T, Alvarez M, Pereiro I, et al. Clinical evaluation of two consanguineous families with homozygous mutations in BEST1. Mol Vis 2011;17:1607–1617
  • Iannaccone A, Kerr NC, Kinnick TR, et al. Autosomal recessive best vitelliform macular dystrophy: report of a family and management of early-onset neovascular complications. Arch Ophthalmol 2011;129:211–217
  • Pomares E, Bures-Jelstrup A, Ruiz-Nogales S, et al. Nonsense-mediated decay as the molecular cause for autosomal recessive bestrophinopathy in two unrelated families. Invest Ophthalmol Vis Sci 2012;53:532–537
  • Marmorstein LY, Wu J, McLaughlin P, et al. The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol 2006;127:577–589
  • Zhang Y, Stanton JB, Wu J, et al. Suppression of Ca2+ signaling in a mouse model of Best disease. Hum Mol Genet 2010;19:1108–1118
  • Wittström E, Ponjavic V, Bondeson ML, et al. Anterior segment abnormalities and angle-closure glaucoma in a family with a mutation in the BEST1 gene and Best vitelliform macular dystrophy. Ophthalmic Genet 2011;32:217–227
  • Boon CJ, van den Born LI, Visser L, et al. Autosomal recessive bestrophinopathy: differential diagnosis and treatment options. Ophthalmology 2013;120:809–820
  • Marmorstein AD, Marmorstein LY. The challenge of modeling macular degeneration in mice. Trends Genet 2007;23:225–231
  • Wu J, Peachey NS, Marmorstein AD. Light-evoked responses of the mouse retinal pigment epithelium. J Neurophysiol 2004;91:1134–1142
  • Peterson WM, Meggyesy C, Yu K, et al. Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci 1997;17:2324–2337
  • Marmorstein AD, Stanton JB, Yocom J, et al. A model of best vitelliform macular dystrophy in rats. Invest Ophthalmol Vis Sci 2004;45:3733–3739
  • Guziewicz KE, Slavik J, Lindauer SJ, et al. Molecular consequences of BEST1 gene mutations in canine multifocal retinopathy predict functional implications for human bestrophinopathies. Invest Ophthalmol Vis Sci 2011;52:4497–4505
  • Zangerl B, Wickstrom K, Slavik J, et al. Assessment of canine BEST1 variations identifies new mutations and establishes an independent bestrophinopathy model (cmr3). Mol Vis 2010;16:2791–2804
  • Hoffmann I, Guziewicz KE, Zangerl B, et al. Canine multifocal retinopathy in the Australian Shepherd: a case report. Vet Ophthalmol 2012;15(Suppl 2):134–138
  • Guziewicz KE, Komaromy A, Iwabe S, et al. Sustained therapeutic reversal of canine bestrophinopathy with gene therapy using recombinant AAV2. ARVO Meeting Abstracts 2013;54:5965 . http://abstracts.iovs.org//cgi/content/abstract/54/6/5965?sid=25eadce0-f892-4484-857bf9ec43562a12
  • Besharse JC. The daily light-dark cycle and rhythmic metabolism in the photoreceptor-pigment epithelial complex. Prog Retin Res 1982;1:81–124
  • LaVail MM. Outer segment disc shedding and phagocytosis in the outer retina. Trans Ophthalmol Soc U K 1983;103:397–404
  • Nguyen-Legros J, Hicks D. Renewal of photoreceptor outer segments and their phagocytosis by the retinal pigment epithelium. Int Rev Cytol 2000;196:245–313
  • Aldehni F, Spitzner M, Martins JR, et al. Bestrophin 1 promotes epithelial-to-mesenchymal transition of renal collecting duct cells. J Am Soc Nephrol 2009;20:1556–1564
  • Spitzner M, Martins JR, Soria RB, et al. Eag1 and Bestrophin 1 are up-regulated in fast-growing colonic cancer cells. J Biol Chem 2008;283:7421–7428
  • Barro-Soria R, Spitzner M, Schreiber R, et al. Bestrophin-1 enables Ca2+-activated Cl- conductance in epithelia. J Biol Chem 2009;284:29405–29412
  • Duta V, Szkotak AJ, Nahirney D, et al. The role of bestrophin in airway epithelial ion transport. FEBS Lett 2004;577:551–554
  • Park H, Oh SJ, Han KS, et al. Bestrophin-1 encodes for the Ca2+-activated anion channel in hippocampal astrocytes. J Neurosci 2009;29:13063–13073
  • Woo DH, Han KS, Shim JW, et al. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 2012;151:25–40
  • Han KS, Woo J, Park H, et al. Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs. Mol Brain 2013;6:4
  • Oh SJ, Han KS, Park H, et al. Protease Activated Receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol Brain 2012;5:38
  • Yu K, Qu Z, Cui Y, et al. Chloride channel activity of bestrophin mutants associated with mild or late-onset macular degeneration. Invest Ophthalmol Vis Sci 2007;48:4694–4705
  • Xiao Q, Yu K, Cui YY, et al. Dysregulation of human bestrophin-1 by ceramide-induced dephosphorylation. J Physiol 2009;587:4379–4391
  • Qu ZQ, Yu K, Cui YY, et al. Activation of bestrophin Cl- channels is regulated by C-terminal domains. J Biol Chem 2007;282:17460–17467
  • Milenkovic VM, Soria RB, Aldehni F, et al. Functional assembly and purinergic activation of bestrophins. Pflugers Arch 2009;458:431–441
  • Reichhart N, Milenkovic VM, Halsband CA, et al. Effect of bestrophin-1 on L-type Ca2+ channel activity depends on the Ca2+ channel beta-subunit. Exp Eye Res 2010;91:630–639
  • Milenkovic VM, Rohrl E, Weber BH, et al. Disease-associated missense mutations in bestrophin-1 affect cellular trafficking and anion conductance. J Cell Sci 2011;124:2988–2996
  • Johnson AA, Lee YS, Stanton JB, et al. Differential effects of Best disease causing missense mutations on bestrophin-1 trafficking. Hum Mol Genet 2013;22:4688--4697
  • Davidson AE, Millar ID, Burgess-Mullan R, et al. Functional characterization of bestrophin-1 missense mutations associated with autosomal recessive bestrophinopathy. Invest Ophthalmol Vis Sci 2011;52:3730–3736
  • Steinberg RH, Linsenmeier RA, Griff ER. Retinal pigment epithelial cell contributions to the electroretinogram and electrooculogram. Prog Retin Res 1985;4:22–66
  • Palomba G, Rozzo C, Angius A, et al. A novel spontaneous missense mutation in VMD2 gene is a cause of a best macular dystrophy sporadic case. Am J Ophthalmol 2000;129:260–262
  • Yu K, Xiao Q, Cui G, et al. The best disease-linked Cl- channel hBest1 regulates Cav1 (L-type) Ca2+ channels via src-homology-binding domains. J Neurosci 2008;28:5660–5670
  • Milenkovic VM, Krejcova S, Reichhart N, et al. Interaction of bestrophin-1 and Ca2+ channel beta-subunits: identification of new binding domains on the bestrophin-1 C-terminus. PLoS One 2011;6:e19364
  • Cordeiro S, Strauss O. Expression of Orai genes and I(CRAC) activation in the human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 2011;249:47–54
  • Pintor J, Sanchez-Nogueiro J, Irazu M, et al. Immunolocalisation of P2Y receptors in the rat eye. Purinergic Signal 2004;1:83–90
  • Wu J, Marmorstein AD, Striessnig J, et al. Voltage-dependent calcium channel CaV1.3 subunits regulate the light peak of the electroretinogram. J Neurophysiol 2007;97:3731–3735
  • Neussert R, Müller C, Milenkovic VM, et al. The presence of bestrophin-1 modulates the Ca2+ recruitment from Ca2+ stores in the ER. Pflugers Arch 2010;460:163–175
  • Gomez NM, Tamm ER, Straubeta O. Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium. Pflugers Arch 2013;465:481–495
  • Qu Z, Hartzell HC. Bestrophin Cl- channels are highly permeable to HCO3-. Am J Physiol Cell Physiol 2008;294:C1371–C1377
  • Xiao Q, Hartzell HC, Yu K. Bestrophins and retinopathies. Pflugers Arch 2010;460:559–569
  • Wangsa-Wirawan ND, Linsenmeier RA. Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 2003;121:547–557
  • Winkler BS. Buffer dependence of retinal glycolysis and ERG potentials. Exp Eye Res 1986;42:585–593
  • Marmorstein AD, Cross HE, Peachey NS. Functional roles of bestrophins in ocular epithelia. Prog Retin Eye Res 2009;28:206–226
  • Zhang L, Hui YN, Wang YS, et al. Calcium overload is associated with lipofuscin formation in human retinal pigment epithelial cells fed with photoreceptor outer segments. Eye (Lond) 2011;25:519–527
  • Xiao Q, Prussia A, Yu K, et al. Regulation of bestrophin Cl channels by calcium: role of the C terminus. J Gen Physiol 2008;132:681–692
  • Qu Z, Fischmeister R, Hartzell C. Mouse bestrophin-2 is a bona fide Cl(−) channel: identification of a residue important in anion binding and conduction. J Gen Physiol 2004;123:327–340
  • Qu Z, Wei RW, Mann W, et al. Two bestrophins cloned from Xenopus laevis oocytes express Ca(2+)-activated Cl(−) currents. J Biol Chem 2003;278:49563–49572
  • Hartzell HC, Qu Z, Yu K, et al. Molecular physiology of bestrophins: multifunctional membrane proteins linked to Best disease and other retinopathies. Physiol Rev 2008;88:639–672
  • Duran C, Chien LT, Hartzell HC. Drosophila bestrophin-1 currents are regulated by phosphorylation via a CaMKII dependent mechanism. PLoS One 2013;8:e58875
  • Qu Z, Cheng W, Cui Y, et al. Human disease-causing mutations disrupt an N-C-terminal interaction and channel function of bestrophin 1. J Biol Chem 2009;284:16473–16481
  • Marmorstein LY, McLaughlin PJ, Stanton JB. Bestrophin interacts physically and functionally with protein phosphatase 2A. J Biol Chem 2002;277:30591–30597
  • Wong RL, Hou P, Choy KW, et al. Novel and homozygous BEST1 mutations in Chinese patients with Best vitelliform macular dystrophy. Retina 2010;30:820–827
  • Yanagi Y, Sekine H, Mori M. Identification of a novel VMD2 mutation in Japanese patients with Best disease. Ophthalmic Genet 2002;23:129–133
  • Sohn EH, Francis PJ, Duncan JL, et al. Phenotypic variability due to a novel Glu292Lys variation in exon 8 of the BEST1 gene causing best macular dystrophy. Arch Ophthalmol 2009;127:913–920
  • Sodi A, Passerini I, Simonelli F, et al. A novel mutation in the VMD2 gene in an Italian family with Best maculopathy. J Fr Ophtalmol 2007;30:616–620
  • Kay CN, Abramoff MD, Mullins RF, et al. Three-dimensional distribution of the vitelliform lesion, photoreceptors, and retinal pigment epithelium in the macula of patients with best vitelliform macular dystrophy. Arch Ophthalmol 2012;130:357–364
  • Kousal B, Chakarova F, Black GC, et al. Minimal ocular findings in a patient with best disease caused by the c.653G>A mutation in BEST1. Cesk Slov Oftalmol 2011;67:170–174
  • Querques G, Zerbib J, Santacroce R, et al. Functional and clinical data of Best vitelliform macular dystrophy patients with mutations in the BEST1 gene. Mol Vis 2009;15:2960–2972
  • Ponjavic V, Eksandh L, Andreasson S, et al. Clinical expression of Best's vitelliform macular dystrophy in Swedish families with mutations in the bestrophin gene. Ophthalm Genet 1999;20:251–257
  • Marchant D, Yu K, Bigot K, et al. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy. J Med Genet 2007;44:e70
  • Li Y, Wang G, Dong B, et al. A novel mutation of the VMD2 gene in a Chinese family with best vitelliform macular dystrophy. Ann Acad Med Singapore 2006;35:408–410
  • Eksandh L, Bakall B, Bauer B, et al. Best's vitelliform macular dystrophy caused by a new mutation (Val89Ala) in the VMD2 gene. Ophthalm Genet 2001;22:107–115
  • Caldwell GM, Kakuk LE, Griesinger IB, et al. Bestrophin gene mutations in patients with Best vitelliform macular dystrophy. Genomics 1999;58:98–101
  • Chacon-Camacho OF, Camarillo-Blancarte L, Zenteno JC. OCT findings in young asymptomatic subjects carrying familial BEST1 gene mutations. Ophthalmic Genet 2011;32:24–30
  • Atchaneeyasakul LO, Jinda W, Sakolsatayadorn N, et al. Mutation analysis of the VMD2 gene in thai families with best macular dystrophy. Ophthalmic Genet 2008;29:139–144
  • Allikmets R, Seddon JM, Bernstein PS, et al. Evaluation of the Best disease gene in patients with age-related macular degeneration and other maculopathies. Hum Genet 1999;104:449–453
  • Apushkin MA, Fishman GA, Taylor CM, Stone EM. Novel de novo mutation in a patient with Best macular dystrophy. Arch Ophthalmol 2006;124:887–889
  • Qu Z, Chien LT, Cui Y, Hartzell HC. The anion-selective pore of the bestrophins, a family of chloride channels associated with retinal degeneration. J Neurosci 2006;26:5411–5419
  • Preising MN, Pasquay C, Friedburg CF, et al. Autosomal Rezessive Bestrophinopathie (ARB): Klinische und Molekulare Beschreibung zweier Patienten im Kindesalter. Klin Monatsbl Augenheilkd 2012;229:1009–1017
  • Lacassagne E, Dhuez A, Rigaudiere F, et al. Phenotypic variability in a French family with a novel mutation in the BEST1 gene causing multifocal best vitelliform macular dystrophy. Mol Vis 2011;17:309–322
  • Krämer F, Mohr N, Kellner U, et al. Ten novel mutations in VMD2 associated with Best macular dystrophy (BMD). Hum Mutat 2003;22:418
  • Zhao L, Grob S, Corey R, et al. A novel compound heterozygous mutation in the BEST1 gene causes autosomal recessive Best vitelliform macular dystrophy. Eye (Lond) 2012;26:866–871
  • Wittström E, Ekvall S, Schatz P, et al. Morphological and functional changes in multifocal vitelliform retinopathy and biallelic mutations in BEST1. Ophthalmic Genet 2011;32:83–96
  • Downs K, Zacks DN, Caruso R, et al. Molecular testing for hereditary retinal disease as part of clinical care. Arch Ophthalmol 2007;125:252–258
  • Rosenthal R, Bakall B, Kinnick T, et al. Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 2006;20:178–180

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.