2,210
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Letharia vulpina, a vulpinic acid containing lichen, targets cell membrane and cell division processes in methicillin-resistant Staphylococcus aureus

, , &
Pages 413-418 | Received 29 Oct 2014, Accepted 03 Apr 2015, Published online: 28 Apr 2015

References

  • Abo-Khatwa AN, Al-Robai AA, Al-Jawhari DA. (1996). Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria. Nat Toxins 4:96–102
  • Alwash MS, Ibrahim N, Ahmad WY. (2013). Identification and mode of action of antibacterial components from Melastoma malabathricum Linn. leaves. Am J Infect Dis 9:46–58
  • Andra J, Jakovkin I, Grotzinger J, et al. (2008). Structure and mode of action of the antimicrobial peptide arenicin. Biochem J 410:113–22
  • Araújo AAS, de Melo MGD, Rabelo TK, et al. (2015). Review of the biological properties and toxicity of usnic acid. Nat Prod Res. [Epub head of print]. doi:10.1080/14786419.2015.1007455
  • Arndt-Jovin DJ, Jovin TM. (1989). Fluorescence labeling and microscopy of DNA. Method Cell Biol 30:417–48
  • Boustie J, Tomasi S, Grube M. (2011). Bioactive lichen metabolites: Alpine habitats as an untapped source. Phytochem Rev 10:287–307
  • Burkholder PR, Evans AW, Mcveigh I, Thornton HK. (1944). Antibiotic activity of lichens. Proc Natl Acad Sci USA 30:250–5
  • Carson CF, Mee BJ, Riley TV. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicro Agents Ch 46:1914–20
  • Cocchietto M, Skert N, Nimis P, Sava G. (2002). A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–46
  • Collignon PJ. (2002). Antibiotic resistance. Med J Aust 177:325–9
  • Francolini I, Norris P, Piozzi A, et al. (2004). Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicro Agents Ch 48:4360–5
  • Galun M. (1988). CRC Handbook of Lichenology (Vol II). Boca Raton (FL): CRC Press, Inc
  • Gilbert P. (1984). The revival of micro-organisms sublethally injured by chemical inhibitors. Soc Appl Bacteriol Symp Ser 12:175–97
  • Gupta V, Verma S, Gupta S, et al. (2012). Membrane-damaging potential of natural l-(−)-usnic acid in Staphylococcus aureus. Eur J Clin Microbiol 31:3375–83
  • Hunn ES. (1990). Nch'i-Wana, “The Big River”: Mid-Columbia Indians and Their Land. Seattle: University of Washington Press
  • Isnansetyo A, Kamei Y. (2003). MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicro Agents Ch 47:480–8
  • Kokubun T, Shiu WK, Gibbons S. (2007). Inhibitory activities of lichen-derived compounds against methicillin-and multidrug-resistant Staphylococcus aureus. Planta Med 73:176–9
  • Lauterwein M, Oethinger M, Belsner K, et al. (1995). In vitro activities of the lichen secondary metabolites vulpinic acid,(+)-usnic acid, and (−)-usnic acid against aerobic and anaerobic microorganisms. Antimicro Agents Ch 39:2541–3
  • Lawrey JD. (1983). Vulpinic and pinastric acids as lichen antiherbivore compounds: Contrary evidence. Bryologist 86:365–9
  • Leeb M. (2004). Antibiotics: A shot in the arm. Nature 431:892–3
  • Liapikou A, Torres A. (2013). Emerging drugs on methicillin-resistant Staphylococcus aureus. Expert Opin Emerg Dr 18:291–305
  • Malhotra S, Subban R, Singh A. (2007). Lichens – Role in traditional medicine and drug discovery. Int J Alter Med 2:1–9
  • Mobashery S, Azucena E. (2002). Bacterial antibiotic resistance. Encycl Life Sci 2:472–7
  • Molnar K, Farkas E. (2010). Current results on biological activities of lichen secondary metabolites: A review. Z Naturforsch(C) 65:157–73
  • Nobles CL, Green SI, Maresso AW. (2013). A product of heme catabolism modulates bacterial function and survival. PLoS Pathog 9:e1003507
  • Odds FC, Rinaldi MG, Sheehan DJ, Warnock DW. (2001). Antifungal susceptibility testing: Practical aspects and current challenges. Clin Microbiol Rev 14:643–58
  • Plaza A, Keffer JL, Bifulco G, et al. (2010). Chrysophaentins A-H, antibacterial bisdiarylbutene macrocycles that inhibit the bacterial cell division protein FtsZ. J Am Chem Soc 132:9069–77
  • Pompilio A, Pomponio S, Di Vincenzo V, et al. (2013). Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients. Future Microbiol 8:281–92
  • Ramos DDBM, Gomes FS, Napoleão TH, et al. (2014). Antimicrobial activity of Cladonia verticillaris lichen preparations on bacteria and fungi of medical importance. Chin J Biol. [Epub ahead of print]. https://doi.org/http://dx.doi.org/10.1155/2014/219392
  • Ranković B, Kosanić M, Manojlović N, et al. (2014). Chemical composition of Hypogymnia physodes lichen and biological activities of some its major metabolites. Med Chem Res 23:408–16
  • Saleem M, Nazir M, Ali MS, et al. (2010). Antimicrobial natural products: An update on future antibiotic drug candidates. Nat Prod Rep 27:238–54
  • Shrestha G, Raphael J, Leavitt SD, St. Clair LL. (2014). In vitro evaluation of the antibacterial activity of extracts from thirty-four species of North American lichens. Pharm Biol 52:1262–6
  • Shrestha G, St. Clair LL. (2013a). Antimicrobial activity of extracts from two lichens Ramalina menziesii and Usnea lapponica. Bull California Lichen Soc 20:5–10
  • Shrestha G, St. Clair LL. (2013b). Lichens: A promising source of antibiotic and anticancer drugs. Phytochem Rev 12:229–44
  • Sikkema J, De Bont J, Poolman B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–22
  • Stapleton PD, Taylor PW. (2002). Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci Prog 85:57–72
  • Stojanovic G, Stojanovic I, Smelcerovic A. (2012). Lichen depsidones as potential novel pharmacologically active compounds. Mini-Rev Org Chem 9:178–84
  • Taylor AR. (2013). Methicillin-resistant Staphylococcus aureus infections. Primary Care 40:637–54
  • Wang J, Galgoci A, Kodali S, et al. (2003). Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 278:44424–8
  • Wilson BA, Salyers AA, Whitt DD, Winkler ME. (2011). Bacterial Pathogenesis: A Molecular Approach. Washington (DC): ASM Press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.