305
Views
27
CrossRef citations to date
0
Altmetric
Review Article

The role of leukotrienes in immunopathogenesis of rheumatoid arthritis

, , , &
Pages 225-235 | Received 06 Nov 2012, Accepted 27 Feb 2013, Published online: 05 Mar 2014

References

  • Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937): 356–361.
  • Noss EH, Brenner MB. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol Rev. 2008;223: 252–270.
  • Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol. 2008;3: 279–312.
  • Shimizu T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol. 2009;49: 123–150.
  • Gursel T, Firat S, Ercan ZS. Increased serum leukotriene B4 level in the active stage of rheumatoid arthritis in children. Prostaglandins Leukot Essent Fatty Acids. 1997;56(3): 205–207.
  • Grignani G, Zucchella M, Belai BN, Brocchieri A, Saporiti A, Cherie Ligniere EL. Levels of different metabolites of arachidonic acid in synovial fluid of patients with arthrosis or rheumatoid arthritis. Minerva Med. 1996;87(3): 75–79.
  • Bailie MB, Standiford TJ, Laichalk LL, Coffey MJ, Strieter R, Peters-Golden M. Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J Immunol. 1996;157(12): 5221–5224.
  • Benjamim CF, Canetti C, Cunha FQ, Kunkel SL, Peters-Golden M. Opposing and hierarchical roles of leukotrienes in local innate immune versus vascular responses in a model of sepsis. J Immunol. 2005;174(3): 1616–1620.
  • Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987;237(4819): 1171–1176.
  • Michel AA, Steinhilber D, Werz O. Development of a method for expression and purification of the regulatory C2-like domain of human 5-lipoxygenase. Protein Expr Purif. 2008;59(1): 110–116.
  • Maas RL, Ingram CD, Taber DF, Oates JA, Brash AR. Stereospecific removal of the DR hydrogen atom at the 10-carbon of arachidonic acid in the biosynthesis of leukotriene A4 by human leukocytes. J Biol Chem. 1982;257(22): 13515–13519.
  • Shimizu T, Radmark O, Samuelsson B. Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci USA. 1984;81(3): 689–693.
  • Abramovitz M, Wong E, Cox ME, Richardson CD, Li C, Vickers PJ. 5-Lipoxygenase-activating protein stimulates the utilization of arachidonic acid by 5-lipoxygenase. Eur J Biochem. 1993;215(1): 105–111.
  • Neu I, Mallinger J, Wildfeuer A, Mehlber L. Leukotrienes in the cerebrospinal fluid of multiple sclerosis patients. Acta Neurol Scand. 1992;86(6): 586–587.
  • Brock TG, Paine RIII, Peters-Golden M. Localization of 5-lipoxygenase to the nucleus of unstimulated rat basophilic leukemia cells. J Biol Chem. 1994;269(35): 22059–22066.
  • Woods JW, Evans JF, Ethier D, Scott S, Vickers PJ, Hearn L, et al. 5-Lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med. 1993;178(6): 1935–1946.
  • Clark SR, Coffey MJ, Maclean RM, Collins PW, Lewis MJ, Cross AR, et al. Characterization of nitric oxide consumption pathways by normal, chronic granulomatous disease and myeloperoxidase-deficient human neutrophils. J Immunol. 2002;169(10): 5889–5896.
  • Rouzer CA, Matsumoto T, Samuelsson B. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci USA. 1986;83(4): 857–861.
  • Lewis RA, Austen KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 1990;323(10): 645–655.
  • Penrose JF. LTC4 synthase. Enzymology, biochemistry, and molecular characterization. Clin Rev Allergy Immunol. 1999;17(1–2): 133–152.
  • Bernstrom K, Orning L, Hammarstrom S. Gamma-glutamyl transpeptidase, a leukotriene metabolizing enzyme. Methods Enzymol. 1982;86: 38–45.
  • Nagaoka I, Yamada M, Kira S, Yamashita T. Comparative studies on the leukotriene D4-metabolizing enzyme of different types of leukocytes. Comp Biochem Physiol B. 1988;89(2): 375–380.
  • Raulf M, Konig W, Koller M, Stuning M. Release and functional characterization of the leukotriene D4-metabolizing enzyme (dipeptidase) from human polymorphonuclear leucocytes. Scand J Immunol. 1987;25(3): 305–313.
  • Haeggstrom JZ, Kull F, Rudberg PC, Tholander F, Thunnissen MM. Leukotriene A4 hydrolase. Prostaglandins Other Lipid Mediat. 2002;68–69: 495–510.
  • Maclouf J, Antoine C, Henson PM, Murphy RC. Leukotriene C4 formation by transcellular biosynthesis. Ann N Y Acad Sci. 1994;714: 143–150.
  • Maclouf J, Sala A, Rossoni G, Berti F, Muller-Peddinghaus R, Folco G. Consequences of transcellular biosynthesis of leukotriene C4 on organ function. Haemostasis. 1996;26(Suppl 4): 28–36.
  • Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J. 2006;25(19): 4615–4627.
  • Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature. 1999;399(6738): 789–793.
  • Mellor EA, Maekawa A, Austen KF, Boyce JA. Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci USA. 2001;98(14): 7964–7969.
  • Sarau HM, Ames RS, Chambers J, Ellis C, Elshourbagy N, Foley JJ, et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol Pharmacol. 1999;56(3): 657–663.
  • Nielsen CK, Campbell JI, Ohd JF, Morgelin M, Riesbeck K, Landberg G, et al. A novel localization of the G-protein-coupled CysLT1 receptor in the nucleus of colorectal adenocarcinoma cells. Cancer Res. 2005;65(3): 732–742.
  • Heise CE, O’Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem. 2000;275(39): 30531–30536.
  • Sjostrom M, Johansson AS, Schroder O, Qiu H, Palmblad J, Haeggstrom JZ. Dominant expression of the CysLT2 receptor accounts for calcium signaling by cysteinyl leukotrienes in human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23(8): e37–e41.
  • Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, et al. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One. 2008;3(10): e3579.
  • Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM. Advances in signalling by extracellular nucleotides. The role and transduction mechanisms of P2Y receptors. Cell Signal. 2000;12(6): 351–360.
  • Stucky CL, Medler KA, Molliver DC. The P2Y agonist UTP activates cutaneous afferent fibers. Pain. 2004;109(1–2): 36–44.
  • Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9(12): 1512–1519.
  • Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature. 2007;446(7139): 1091–1095.
  • Back M, Bu DX, Branstrom R, Sheikine Y, Yan ZQ, Hansson GK. Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci USA. 2005;102(48): 17501–17506.
  • Qiu H, Johansson AS, Sjostrom M, Wan M, Schroder O, Palmblad J, et al. Differential induction of BLT receptor expression on human endothelial cells by lipopolysaccharide, cytokines, and leukotriene B4. Proc Natl Acad Sci USA. 2006;103(18): 6913–6918.
  • Toda A, Yokomizo T, Shimizu T. Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat. 2002;68–69: 575–585.
  • Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature. 1996;384(6604): 39–43.
  • Peres CM, Aronoff DM, Serezani CH, Flamand N, Faccioli LH, Peters-Golden M. Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. J Immunol. 2007;179(8): 5454–5461.
  • Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood. 2007;110(9): 3263–3270.
  • Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. A second leukotriene B(4) receptor, BLT2. A new therapeutic target in inflammation and immunological disorders. J Exp Med. 2000;192(3): 421–432.
  • Gagnon L, Girard M, Sullivan AK, Rola-Pleszczynski M. Augmentation of human natural cytotoxic cell activity by leukotriene B4 mediated by enhanced effector-target cell binding and increased lytic efficiency. Cell Immunol. 1987;110(2): 243–252.
  • Rola-Pleszczynski M, Gagnon L, Sirois P. Leukotriene B4 augments human natural cytotoxic cell activity. Biochem Biophys Res Commun. 1983;113(2): 531–537.
  • Yamaoka KA, Claesson HE, Rosen A. Leukotriene B4 enhances activation, proliferation, and differentiation of human B lymphocytes. J Immunol. 1989;143(6): 1996–2000.
  • Wang S, Gustafson E, Pang L, Qiao X, Behan J, Maguire M, et al. A novel hepatointestinal leukotriene B4 receptor. Cloning and functional characterization. J Biol Chem. 2000;275(52): 40686–40694.
  • Haneda Y, Hasegawa S, Hirano R, Hashimoto K, Ohsaki A, Ichiyama T. Leukotriene D(4) enhances tumor necrosis factor-alpha-induced vascular endothelial growth factor production in human monocytes/macrophages. Cytokine. 2011. [Epub ahead of print].
  • Sala A, Zarini S, Bolla M. Leukotrienes: lipid bioeffectors of inflammatory reactions. Biochemistry (Mosc). 1998;63(1): 84–92.
  • Sharma JN, Mohammed LA. The role of leukotrienes in the pathophysiology of inflammatory disorders: is there a case for revisiting leukotrienes as therapeutic targets? Inflammopharmacology. 2006;14(1–2):10–6.
  • Yokomizo T, Izumi T, Shimizu T. Co-expression of two LTB4 receptors in human mononuclear cells. Life Sci. 2001;68(19–20): 2207–2212.
  • Kato K, Yokomizo T, Izumi T, Shimizu T. Cell-specific transcriptional regulation of human leukotriene B(4) receptor gene. J Exp Med. 2000;192(3): 413–420.
  • Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature. 1997;387(6633): 620–624.
  • Kamohara M, Takasaki J, Matsumoto M, Saito T, Ohishi T, Ishii H, et al. Molecular cloning and characterization of another leukotriene B4 receptor. J Biol Chem. 2000;275(35): 27000–27004.
  • Tryselius Y, Nilsson NE, Kotarsky K, Olde B, Owman C. Cloning and characterization of cDNA encoding a novel human leukotriene B(4) receptor. Biochem Biophys Res Commun. 2000;274(2): 377–382.
  • Mathis SP, Jala VR, Lee DM, Haribabu B. Nonredundant roles for leukotriene B4 receptors BLT1 and BLT2 in inflammatory arthritis. J Immunol. 2010;185(5): 3049–3056.
  • Hashimoto A, Endo H, Hayashi I, Murakami Y, Kitasato H, Kono S, et al. Differential expression of leukotriene B4 receptor subtypes (BLT1 and BLT2) in human synovial tissues and synovial fluid leukocytes of patients with rheumatoid arthritis. J Rheumatol. 2003;30(8): 1712–1718.
  • Nicolete R, Rius C, Piqueras L, Jose PJ, Sorgi CA, Soares EG, et al. Leukotriene B4-loaded microspheres: a new therapeutic strategy to modulate cell activation. BMC Immunol. 2008;9: 36.
  • Leibbrandt A, Penninger JM. RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol. 2009;647: 130–145.
  • Chen ZK, Lv HS, Jiang J. LTB4 can stimulate human osteoclast differentiation dependent of RANKL. Artif Cells Blood Substit Immobil Biotechnol. 2010;38(1): 52–56.
  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754): 708–712.
  • Ott VL, Cambier JC, Kappler J, Marrack P, Swanson BJ. Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat Immunol. 2003;4(10): 974–981.
  • Goodarzi K, Goodarzi M, Tager AM, Luster AD, Andrian UH. Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat Immunol. 2003;4(10): 965–973.
  • Miyahara N, Takeda K, Miyahara S, Matsubara S, Koya T, Joetham A, et al. Requirement for leukotriene B4 receptor 1 in allergen-induced airway hyperresponsiveness. Am J Respir Crit Care Med. 2005;172(2): 161–167.
  • Mathis S, Jala VR, Haribabu B. Role of leukotriene B4 receptors in rheumatoid arthritis. Autoimmun Rev. 2007;7(1): 12–17.
  • Lee DM, Friend DS, Gurish MF, Benoist C, Mathis D, Brenner MB. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science. 2002;297(5587): 1689–1692.
  • Griffiths RJ, Smith MA, Roach ML, Stock JL, Stam EJ, Milici AJ, et al. Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. J Exp Med. 1997;185(6): 1123–1129.
  • Canetti CA, Leung BP, Culshaw S, McInnes IB, Cunha FQ, Liew FY. IL-18 enhances collagen-induced arthritis by recruiting neutrophils via TNF-alpha and leukotriene B4. J Immunol. 2003;171(2): 1009–1015.
  • McInnes IB. Leukotrienes, mast cells, and T cells. Arthritis Res Ther. 2003;5(6): 288–289.
  • Gaffo A, Saag KG, Curtis JR. Treatment of rheumatoid arthritis. Am J Health Syst Pharm. 2006;63(24): 2451–2465.
  • Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned?. Annu Rev Immunol. 2001;19: 163–196.
  • Henderson WRJr. The role of leukotrienes in inflammation. Ann Intern Med. 1994;121(9): 684–697.
  • Massoumi R, Sjolander A. The role of leukotriene receptor signaling in inflammation and cancer. ScientificWorldJournal. 2007;7: 1413–1421.
  • Hikiji H, Takato T, Shimizu T, Ishii S. The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog Lipid Res. 2008;47(2): 107–126.
  • Ahmadzadeh N, Shingu M, Nobunaga M, Tawara T. Relationship between leukotriene B4 and immunological parameters in rheumatoid synovial fluids. Inflammation. 1991;15(6): 497–503.
  • Cuzzocrea S, Rossi A, Mazzon E, Di PR, Genovese T, Muia C, et al. 5-Lipoxygenase modulates colitis through the regulation of adhesion molecule expression and neutrophil migration. Lab Invest. 2005;85(6): 808–822.
  • Cuzzocrea S, Rossi A, Serraino I, Mazzon E, Di PR, Dugo L, et al. 5-Lipoxygenase knockout mice exhibit a resistance to pleurisy and lung injury caused by carrageenan. J Leukoc Biol. 2003;73(6): 739–746.
  • Krönke G, Katzenbeisser J, Uderhardt S, Zaiss MM, Scholtysek C, et al. 12/15-Lipoxygenase counteracts inflammation and tissue damage in arthritis. J Immunol. 2009;183(5): 3383–3389.
  • Serhan CN, Chiang N, Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5): 349–361.
  • Serhan CN, Jain A, Marleau S, Clish C, Kantarci A, et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J Immunol. 2003;171(12): 6856–6865.
  • Wen Y, Gu J, Chakrabarti SK, Aylor K, Marshall J, et al. The role of 12/15-lipoxygenase in the expression of interleukin-6 and tumor necrosis factor-alpha in macrophages. Endocrinology. 2007;148(3): 1313–1322.
  • Wick G, Knoflach M, Xu Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol. 2004;22: 361–403.
  • Flamand L, Tremblay MJ, Borgeat P. Leukotriene B4 triggers the in vitro and in vivo release of potent antimicrobial agents. J Immunol. 2007;178(12): 8036–8045.
  • Chen M, Lam BK, Kanaoka Y, Nigrovic PA, Audoly LP, Austen KF, et al. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J Exp Med. 2006;203(4): 837–842.
  • Hallett MB, Williams AS. Stopping the traffic: a route to arthritis therapy. Eur J Immunol. 2008;38(10): 2650–2653.
  • Diaz-Gonzalez F, Alten RH, Bensen WG, Brown JP, Sibley JT, Dougados M, et al. Clinical trial of a leucotriene B4 receptor antagonist, BIIL 284, in patients with rheumatoid arthritis. Ann Rheum Dis. 2007;66(5):628–32.
  • Nigrovic PA, Lee DM. Mast cells in inflammatory arthritis. Arthritis Res Ther. 2005;7(1): 1–11.
  • Eklund KK. Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol Rev. 2007;217: 38–52.
  • Maruotti N, Crivellato E, Cantatore FP, Vacca A, Ribatti D. Mast cells in rheumatoid arthritis. Clin Rheumatol. 2007;26(1): 1–4.
  • McLachlan JB, Hart JP, Pizzo SV, Shelburne CP, Staats HF, Gunn MD, et al. Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol. 2003;4(12): 1199–1205.
  • Woolley DE, Tetlow LC. Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Res. 2000;2(1): 65–74.
  • Harris RR, Carter GW, Bell RL, Moore JL, Brooks DW. Clinical activity of leukotriene inhibitors. Int J Immunopharmacol. 1995;17(2): 147–156.
  • Xu S, Lu H, Lin J, Chen Z, Jiang D. Regulation of TNFalpha and IL1beta in rheumatoid arthritis synovial fibroblasts by leukotriene B4. Rheumatol Int. 2010;30(9): 1183–1189.
  • Lindner SC, Kohl U, Maier TJ, Steinhilber D, Sorg BL. TLR2 ligands augment cPLA2alpha activity and lead to enhanced leukotriene release in human monocytes. J Leukoc Biol. 2009;86(2): 389–399.
  • Lefebvre JS, Levesque T, Picard S, Pare G, Gravel A, Flamand L, et al. The extra domain A of fibronectin primes leukotriene biosynthesis and stimulates neutrophil migration through toll-like receptor 4 activation. Arthritis Rheum. 2011;63(6):1527–33.
  • Simmonds RE, Foxwell BM. Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford). 2008;47(5): 584–590.
  • Mankan AK, Lawless MW, Gray SG, Kelleher D, McManus R. NF-kappaB regulation: the nuclear response. J Cell Mol Med. 2009;13(4): 631–643.
  • Sanchez-Galan E, Gomez-Hernandez A, Vidal C, Martin-Ventura JL, Blanco-Colio LM, Munoz-Garcia B, et al. Leukotriene B4 enhances the activity of nuclear factor-kappaB pathway through BLT1 and BLT2 receptors in atherosclerosis. Cardiovasc Res. 2009;81(1): 216–225.
  • Serezani CH, Lewis C, Jancar S, Peters-Golden M. Leukotriene B4 amplifies NF-kappaB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. J Clin Invest. 2011;121(2): 671–682.
  • Abramson S, Edelson H, Kaplan H, Given W, Weissmann G. The neutrophil in rheumatoid arthritis: its role and the inhibition of its activation by nonsteroidal antiinflammatory drugs. Semin Arthritis Rheum. 1983;13(1 Suppl 1): 148–153.
  • Buch MH, Emery P. New therapies in the management of rheumatoid arthritis. Curr Opin Rheumatol. 2011;23(3): 245–251.
  • Passalacqua G, Ciprandi G, Scordamaglia A, Canonica GW. Anti-leukotriene agents: rationale for and prospects of use. Ann Ital Med Int. 1996;11(Suppl 2): 93S–96S.
  • Anderson GD, Keys KL, Ciechi PA, Masferrer JL. Combination therapies that inhibit cyclooxygenase-2 and leukotriene synthesis prevent disease in murine collagen induced arthritis. Inflamm Res. 2009;58(2): 109–117.
  • Rainsford KD, Ying C, Smith F. Effects of 5-lipoxygenase inhibitors on interleukin production by human synovial tissues in organ culture: comparison with interleukin-1-synthesis inhibitors. J Pharm Pharmacol. 1996;48(1): 46–52.
  • Schiff M. Emerging treatments for rheumatoid arthritis. Am J Med. 1997;102(1A):11S–5S.
  • Ammon HP. Boswellic acids (components of frankincense) as the active principle in treatment of chronic inflammatory diseases. Wien Med Wochenschr. 2002;152(15–16): 373–378.
  • Poeckel D, Werz O. Boswellic acids: biological actions and molecular targets. Curr Med Chem. 2006;13(28): 3359–3369.
  • Cuaz-Perolin C, Billiet L, Bauge E, Copin C, Scott-Algara D, Genze F, et al. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE−/− mice. Arterioscler Thromb Vasc Biol. 2008;28(2): 272–277.
  • Takada Y, Ichikawa H, Badmaev V, Aggarwal BB. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol. 2006;176(5): 3127–3140.
  • Tsuji F, Miyake Y, Horiuchi M, Mita S. Involvement of leukotriene B4 in murine dermatitis models. Biochem Pharmacol. 1998;55(3): 297–304.
  • Rask-Madsen J, Bukhave K, Laursen LS, Lauritsen K. 5-Lipoxygenase inhibitors in the treatment of inflammatory bowel disease. Adv Prostaglandin Thromboxane Leukot Res. 1994;22: 113–124.
  • Datta K, Biswal SS, Kehrer JP. The 5-lipoxygenase-activating protein (FLAP) inhibitor, MK886, induces apoptosis independently of FLAP. Biochem J. 1999;340(Pt 2): 371–375.
  • Fretland DJ, Anglin CP, Bremer M, Isakson P, Widomski DL, Paulson SK, et al. Antiinflammatory effects of second-generation leukotriene B4 receptor antagonist, SC-53228: impact upon leukotriene B4- and 12(R)-HETE-mediated events. Inflammation. 1995;19(2): 193–205.
  • Griffiths RJ, Pettipher ER, Koch K, Farrell CA, Breslow R, Conklyn MJ, et al. Leukotriene B4 plays a critical role in the progression of collagen-induced arthritis. Proc Natl Acad Sci USA. 1995;92(2): 517–521.
  • Dunn CJ, Goa KL. Zafirlukast: an update of its pharmacology and therapeutic efficacy in asthma. Drugs. 2001;61(2): 285–315.
  • Bonnet C, Bertin P, Cook-Moreau J, Chable-Rabinovitch H, Treves R, Rigaud M. Lipoxygenase products and expression of 5-lipoxygenase and 5-lipoxygenase-activating protein in human cultured synovial cells. Prostaglandins. 1995;50(3): 127–135.
  • Rola-Pleszczynski M, Bouvrette L, Gingras D, Girard M. Identification of interferon-gamma as the lymphokine that mediates leukotriene B4-induced immunoregulation. J Immunol. 1987;139(2): 513–517.
  • Leppert D, Hauser SL, Kishiyama JL, An S, Zeng L, Goetzl EJ. Stimulation of matrix metalloproteinase-dependent migration of T cells by eicosanoids. FASEB J. 1995;9(14): 1473–1481.
  • Grespan R, Fukada SY, Lemos HP, Vieira SM, Napimoga MH, Teixeira MM, et al. CXCR2-specific chemokines mediate leukotriene B4-dependent recruitment of neutrophils to inflamed joints in mice with antigen-induced arthritis. Arthritis Rheum. 2008;58(7): 2030–2040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.