11
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Wave propagation simulation in normal and infarcted myocardium: Computational and modelling issues

, &
Pages 105-118 | Received 01 Dec 1997, Published online: 12 Jul 2009

References

  • Jack J. J., Noble D., Tsien R. W. Electric Current Flow in Excitable Cells. Clarendon Press, Oxford 1983
  • McAllister R. E., Noble D., Tsien R. W. Reconstruction of the electrical activity of cardiac Purkinje fibers. Journal of Physiology (London) 1975; 251: 1–59
  • Beeler G. W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibers. Journal of Physiology (London) 1977; 268: 177–210
  • Ebihara L., Johnson E. A. Fast sodium current in cardiac muscle: A quantitative description. Biophysics Journal 1980; 32: 779–790
  • Di Francesco D., Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philosophical Transactions of the Royal Society of London B 1985; 307: 353–398
  • Luo C. H., Rudy Y. A model of the ventricular cardiac action potential: depolarization, repolarization and their interaction. Circulation Research 1991; 68: 1501–1526
  • Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential: I. Simulation of ionic currents and concentration changes. Circulation Research 1994; 74: 1071–1096
  • Sahakian A. V., Myers G. A., Maglaveras N. Unidirectional block in cardiac fibers: effects of discontinuities in coupling resistance and spatial changes in resting membrane potential in a computer simulation study. IEEE Transactions on Biomedical Engineering 1992; 39(5)510–522
  • Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London) 1952; 117: 500–544
  • Drouhard J. P., Roberge F. A. Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Computers and Biomedical Research 1987; 20: 333–350
  • Rush S., Larsen H. A practical algorithm for solving dynamic membrane equation. IEEE Transactions in Biomedical Engineering 1978; 25: 389–392
  • Spach M. S., Miller W. T., Geselowitz D. B., Barr R. C, Kootsey J. M., Johnson E. A. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities on intracellular resistance that affect the membrane currents. Circulation Research 1981; 48: 39–54
  • Spach M. S., Miller I W. T., II, Dolber P. C, Kootsey J. M., Sommer J. R., Mosher C. E. The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Circulation Research 1982; 50: 175–191
  • Spach M. S., Josephson M. E. Initiating reentry: the role of nonuniform anisotropy in small circuits. Journal of Cardiovascular Electrophysiology 1994; 5: 182–209
  • Spach M. S., Heidlage J. F. The stochastic nature of cardiac propagation at a microscopic level. Electrical description of myocardial architecture and its application to conduction. Circulation Research 1995; 76: 366–380
  • Spach M. S., Dolber P. C. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circulation Research 1986; 58: 356–371
  • Spach M. S., Miller I W. T., II, Miller-Jones E., Warren R. B., Bar R. C. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circulation Research 1979; 45: 188–204
  • Maglaveras N., De Bakker J. M. T., van Capelle F. J. L., Pappas C, Janse M. Activation delay in healed myocardial infarction: a comparison between model and experiment. American Journal of Physiology 1995; 269: H1441–H1449
  • De Barker J. M. T., van Capelle F. J. L., Janse M. J., Tasseron R. T. S., Vermeulen J. T., de Jong N., Lahpor J. R. Slow conduction in infarcted human heart. Zigzag course of activation. Circulation 1993; 88: 915–926
  • Allessie M. A., Bonke F. J. M., Schopman F. J. G. Circus movement as a mechanism of tachycardia. III The ‘leading circle’ concept: a new model of circus movement in cardiac tissue without the involvement of an anatomic obstacle. Circulation Research 1977; 41: 9–18
  • Brugada J., Boersma C, Kirchof C. J. H., Heyen V. V. T., Allessie M. A. Reentrant excitation around a fixed obstacle in uniform anisotropic ventricular myocardium. Circulation 1991; 84: 1296–1306
  • De Bakker J. M. T., van Capelle F. J. L., Janse M. J., Wilde A. A. M., Coronel R., Becker A. E., Dingemans K. P., van Hemmel N. M., Hauer R. N. W. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 1988; 77: 589–606
  • Janse M. J. Reentrant rhythms. The Heart and Cardiovascular System, H. A. Fozzard, E. Haber, R. B. Jennings. Raven Press, New York 1986; 1203–1238
  • Vinet A., Roberge F. A. The dynamics of sustained reentry in a ring model of cardiac tissue. Annals of Biomedical Engineering 1994; 22: 568–591
  • Lewis T. J., Guevara M. R. Chaotic dynamics in an ionic model of the propagated action potential. Journal of Theoretical Biology 1990; 146: 407–432
  • Cocrtemanche M., Winfree A. T. Re-entrant rotating waves in a Beeler-Reuter based model of two-dimensional cardiac electrical activity. International Journal of Bifurcation Chaos 1991; 1: 431–444
  • Chapman R. A., Fry C. H. An analysis of the cable properties of frog ventricular myocardium. Journal of Physiology (London) 1978; 255: 335–346
  • Joyner R. W., Westerfield M., Moore J. W., Stockbridge N. A numerical method to model excitable cells. Biophysics Journal 1978; 22: 155–170
  • Smith G. D. Numerical Solution of Partial Differential Equations. Finite Difference Methods. Clarendon, Oxford 1985
  • Maglaveras N., Sahakian A. V., Myers G. A. Boundary conditions in cardiac propagating action potentials. IEEE Transactions on Biomedical Engineering 1988; 35: 755–758
  • Roberge F. A., Vinet A., Victorri B. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle. Circulation Research 1986; 58: 461–475
  • Maglaveras N., Offner F., van Capelle F. J. L., Allessie M. A., Sahakian A. V. Effects of barriers on propagation of action potentials in two dimensional cardiac tissue. Journal of Electrocardiology 1995; 28: 17–31
  • Henriquez C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Critical Reviews in Biomedical Engineering 1993; 21: 1–77
  • Henriquez C. S., Muzikant A. I., Smoak C. K. Anisotropy, fiber curvature and bath loading effects on activation in thin and thick cardiac tissue preparations. Journal of Cardiovascular Electrophysiology 1996; 7: 424–444
  • Leon J. L., Roberge F. A. Directional characteristics of action potential propagation in cardiac muscle: a model study. Circulation Research 1991; 69: 378–395

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.