Publication Cover
Human Fertility
an international, multidisciplinary journal dedicated to furthering research and promoting good practice
Volume 17, 2014 - Issue 2
917
Views
96
CrossRef citations to date
0
Altmetric
MicroRNAs in follicular fluid

Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization

, , , , , , , & show all
Pages 90-98 | Received 02 Aug 2013, Accepted 29 Oct 2013, Published online: 31 Mar 2014

References

  • Ambros, V. (2003). MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell, 113, 673–676.
  • Baerwald, A.R., Adams, G.P., & Pierson, R.A. (2012). Ovarian antral folliculogenesis during the human menstrual cycle: a review. Human Reproduction Update, 18, 73–91.
  • Baj-Krzyworzeka, M., Szatanek, R., Weglarczyk, K., Baran, J., Urbanowicz, B., Brański, P., et al. (2006). Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunology Immunotherapy, 55, 808–818.
  • Carletti, M.Z., Fiedler, S.D., & Christenson, L.K. (2010). MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biology of Reproduction, 83, 286–295.
  • Choi, Y., Qin, Y., Berger, M.F., Ballow, D.J., Bulyk, M.L., & Rajkovic, A. (2007). Microarray analyses of newborn mouse ovaries lacking Nobox. Biology of Reproduction, 77, 312–319.
  • Collado, M., Blasco, M.A., & Serrano, M. (2007). Cellular senescence in cancer and aging. Cell, 130, 223–233.
  • da Silveira, J.C., Veeramachaneni, D.N., Winger, Q.A., Carnevale, E.M., & Bouma, G.J. (2012). Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biology of Reproduction, 86, 71.
  • Donadeu, F.X., Schauer, S.N., & Sontakke, S.D. (2012). Involvement of miRNAs in ovarian follicular and luteal development. Journal of Endocrinology, 215, 323–334.
  • Eppig, J.J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction, 122, 829–838.
  • Erickson, G.F. (2001). Role of growth factors in ovary organogenesis. Journal of the Society for Gynecologic Investigation, 8, S13–16.
  • Fritzsching, B., Schwer, B., Kartenbeck, J., Pedal, A., Horejsi, V., & Ott, M. (2002). Release and intercellular transfer of cell surface CD81 via microparticles. Journal of Immunology, 169, 5531–5537.
  • Hansen, K.R., Knowlton, N.S., Thyer, A.C., Charleston, J.S., Soules, M.R., & Klein, N.A. (2008). A new model of rep roductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Human Reproduction, 23, 699–708.
  • Hossain, M.M., Sohel, M.M., Schellander, K., & Tesfaye, D. (2012). Characterization and importance of microRNAs in mammalian gonadal functions. Cell and Tissue Research, 349, 679–690.
  • Jungheim, E.S. & Moley, K.H. (2010). Current knowledge of obesity's effects in the pre- and periconceptional periods and avenues for future research. American Journal of Obstetrics and Gynecology, 203, 525–530.
  • Kalaiselvi, V.S, Saikumar, P., Prabhu, K., & Krishna, GP. (2012). The anti mullerian hormone- a novel marker for assessing the ovarian reserve in women with regular menstrual cycles. Journal of Clinical and Diagnostic Research, 6, 1636–1639.
  • Kidder, G.M. & Vanderhyden, B.C. (2010). Bidirectional comm unication between oocytes and follicle cells: ensuring oocyte developmental competence. Canadian Journal of Physiology and Pharmacology, 88, 399–413.
  • Kloosterman, W.P. & Plasterk, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental Cell, 11, 441–450.
  • Krysko, D.V., Diez-Fraile, A., Criel, G., Svistunov, A.A., Vandenabeele, P., & D’Herde, K. (2008). Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis, 13, 1065–1087.
  • Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858.
  • Lau, N.C., Lim, L.P., Weinstein, E.G., & Bartel, D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858–862.
  • Ledee, N., Gridelet, V., Ravet, S., Jouan, C., Gaspard, O., Wenders, F., et al. (2013). Impact of follicular G-CSF quantification on subsequent embryo transfer decisions: a proof of concept study. Human Reproduction, 28, 406–413.
  • Lee, R.C., Feinbaum, R.L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.75, 843–854.
  • Lee, R.C. & Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294, 862–864.
  • Matzuk, M.M., Burns, K.H., Viveiros, M.M., & Eppig, J.J. (2002). Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science.296, 2178–2180.
  • McReynolds, S., Dzieciatkowska, M., McCallie, B.R., Mitchell, S.D., Stevens, J., Hansen, K., et al. (2012). Impact of maternal aging on the molecular signature of human cumulus cells. Fertility & Sterility, 98, 1574–1580 e1575.
  • Mestdagh, P., Feys, T., Bernard, N., Guenther, S., Chen, C., Speleman, F., & Vandesompele, J. (2008). High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Research, 36, e143.
  • Mestdagh, P., Van Vlierberghe, P., De Weer, A., Muth, D., Westermann, F., Speleman, F., & Vandesompele, J. (2009). A novel and universal method for microRNA RT-qPCR data normalization. Genome Biology, 10, R64.
  • Murchison, E.P., Stein, P., Xuan, Z., Pan, H., Zhang, M.Q., Schultz, R.M., & Hannon, G.J. (2007). Critical roles for Dicer in the female germline. Genes & Development, 21, 682–693.
  • Pacella, L., Zander-Fox, D.L., Armstrong, D.T., & Lane, M. (2012). Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertility & Sterility, 98, 986–994 e981–982.
  • Pasquinelli, A.E., Hunter, S., & Bracht, J. (2005). MicroRNAs: a developing story. Current Opinion in Genetics & Development, 15, 200–205.
  • Patrizio, P., Fragouli, E., Bianchi, V., Borini, A., & Wells D. (2007). Molecular methods for selection of the ideal oocyte. Reproductive Biomedicine Online, 15, 346–353.
  • Patrizio, P. & Sakkas, D. (2009). From oocyte to baby: a clinical evaluation of the biological efficiency of in vitro fertilization. Fertility & Sterility, 91, 1061–1066.
  • Pinborg, A., Gaarslev, C., Hougaard, C.O., Nyboe Andersen, A., Andersen, P.K., Boivin, J., & Schmidt, L. (2011). Influence of female bodyweight on IVF outcome: a longitudinal multicentre cohort study of 487 infertile couples. Reproductive Biomedicine Online, 23, 490–499.
  • Sang, Q., Yao, Z., Wang, H., Feng, R., Wang, H., Zhao, X., et al. (2013). Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogeesis in vitro and are associated with polycystic ovary syndrome in vivo. Journal of Clinical Endocrinology and Metabolism, 98, 3068–3079.
  • Schickel, R., Boyerinas, B., Park, S.M., & Peter, M.E. (2008). MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene, 27, 5959–5974.
  • Schweigert, F.J., Steinhagen, B., Raila, J., Siemann, A., Peet, D., & Buscher, U. (2003). Concentrations of carotenoids, retinol and alpha-tocopherol in plasma and follicular fluid of women undergoing IVF. Human Reproduction, 18, 1259–1264.
  • Senbon, S., Hirao, Y., & Miyano, T. (2003). Interactions between the oocyte and surrounding somatic cells in follicular deve lopment: lessons from in vitro culture. Journal of Reproduction & Development, 49, 259–269.
  • Su, Y.Q., Sugiura, K., & Eppig, J.J. (2009). Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Seminars in Reproductive Medicine, 27, 32–42.
  • Suchanek, E., Simunic, V., Juretic, D., & Grizelj, V. (1994). Follicular fluid contents of hyaluronic acid, follicle-stimulating hormone and steroids relative to the success of in vitro fertilization of human oocytes. Fertility & Sterility, 62, 347–352.
  • Tahinci, E. & Lee, E. (2004). The interface between cell and developmental biology. Current Opinion in Genetics & Development, 14, 361–366.
  • Tam, O.H., Aravin, A.A., Stein, P., Girard, A., Murchison, E.P., Cheloufi, S., et al. (2008). Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature, 453, 534–538.
  • Tang, F., Kaneda, M., O’Carroll, D., Hajkova, P., Barton, S.C., et al. (2007). Maternal microRNAs are essential for mouse zygotic development. Genes & Development, 21:644–648.
  • te Velde, E.R. & Pearson, P.L. (2002). The variability of female reproductive ageing. Human Reproduction Update.8, 141–154.
  • Thery, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, Chapter 3, Unit 3, 22.
  • Warburton, D. (2005). Biological aging and the etiology of aneuploidy. Cytogenetic and Genome Research, 111, 266–272.
  • Watanabe T, Totoki Y, Toyoda A, Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., et al. (2008). Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 453, 539–543.
  • Watson, L.N., Mottershead, D.G., Dunning, K.R., Robker, R.L., Gilchrist, R.B., & Russell, D.L. (2012). Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis. Endocrinology, 153, 4544–4555.
  • Wen, X., Tozer, A.J., Butler, S.A., Bell, C.M., Docherty, S.M., & Iles, R.K. (2006). Follicular fluid levels of inhibin A, inhibin B, and activin A levels reflect changes in follicle size but are not independent markers of the oocyte's ability to fertilize. Fertility & Sterility, 85, 1723–1729.
  • Xu, Y.W., Wang, B., Ding, C.H., Li, T., Gu, F., & Zhou, C. (2011). Differentially expressed micoRNAs in human oocytes. Journal of Assisted Reproduction & Genetics, 28, 559–566.
  • Yuan, A., Farber, E.L., Rapoport, A.L., Tejada, D., Deniskin, R., Akhmedov, N.B., & Farber, D.B. (2009). Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One, 4, e4722.
  • Zuccotti, M., Merico, V., Cecconi, S., Redi, C.A., & Garagna, S. (2011). What does it take to make a developmentally competent mammalian egg?. Human Reproduction Update, 17, 525–540.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.