47
Views
0
CrossRef citations to date
0
Altmetric
Review

Dual contrast magnetic resonance imaging tracking of iron-labeled cells in vivo

, , &
Pages 859-869 | Received 12 Oct 2009, Accepted 29 Dec 2009, Published online: 26 Feb 2010

References

  • Arbab AS, Frank JA. Cellular MRI and its role in stem cell therapy. Regen Med 2008;3:199–215.
  • Modo M, Hoehn M, Bulte JW. Cellular MR imaging. Mol Imaging 2005;4:143–64.
  • Zhang Z, Mascheri N, Dharmakumar R, Li D. Cellular magnetic resonance imaging: potential for use in assessing aspects of cardiovascular disease. Cytotherapy 2008;10:575–86.
  • Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17:484–99.
  • Oude Engberink RD, van der Pol SM, Döpp EA, de Vries HE, Blezer EL. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 2007;243:467–74.
  • Frank JA, Anderson SA, Kalsih H, Jordan EK, Lewis BK, Yocum GT, . Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 2004;6:621–5.
  • Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, . Magnetic-resonancebased tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 2007;25:2583–92.
  • de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, . Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005;23:1407–13.
  • Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science 2003;302:605–8.
  • Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superpara-magnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 2006;34:23–38.
  • Shapiro EM, Skrtic S, Koretsky AP. Sizing it up: Cellular mri using micron-sized iron oxide particles. Magn Reson Med 2005;53:329–38.
  • Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, . Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 2004;104:1217–23.
  • Helmberger T, Semelka RC. New contrast agents for imaging the liver. Magn Reson Imaging Clin N Am 2001;9:745–66.
  • Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA. An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol 2005;26:2290–300.
  • Zhang Z, van den Bos EJ, Wielopolski PA, de Jong-Popijus M, Bernsen MR, Duncker DJ . In vitro imaging of single living human umbilical vein endothelial cells with a clinical 3.0-T MRI scanner. MAGMA 2005;18:175–85.
  • Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, . Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005;105:420–5.
  • Hsiao JK, Tai MF, Chu HH, Chen ST, Li H, Lai DM, . Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: Cellular behavior and capability of detection with clinical 1.5T magnetic resonance at the single cell level. Mag Res Med 2007;58:717–24.
  • Bulte JW, Kraitchman DL. Monitoring cell therapy using iron oxide MR contrast agent. Curr Pharm Biotechnol 2004;5:567–84.
  • Gonzalez-Lara LE, Xu X, Hofstetrova K, Pniak A, Brown A, Foster PJ. In vivo magnetic resonance imaging of spinal cord injury in the mouse. J Neurotrauma 2009;26:753–62.
  • Ferrucci JT, Stark DD. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am J Roentgenol 1990;155:943–50.
  • Small WC, Nelson RC, Bernardino ME. Dual-contrast enhancement of both T1- and T2-weighted sequences using ultr asmall superparamagnetic iron oxide. Magn Reson Imaging 1993;11:645–54.
  • Li W, Tutton S, Vu AT, Pierchala L, Li BS, Lewis JM, . First-pass contrast- enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall super-paramagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 2005;21:46–52.
  • Kelloff GJ, Krohn KA, Larson SM, Weissleder R, Mankoff DA, Hoffman JM, . The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Research 2005;11:7967–85.
  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990;175:489–93.
  • Zhao M, Kircher MF, Josephson L, Weissleder R. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 2002;13:840–4.
  • Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, . Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001;19:1141–7.
  • Cerdan S, Lötscher HR, Künnecke B, Seelig J. Monoclonal antibodycoated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magn Reson Med 1989;12:151–63.
  • Heyn C, Bowen CV, Rutt BK, Foster PJ. Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 2005;53:312–20.
  • Högemann-Savellano D, Bos E, Blondet C, Sato F, Abe T, Josephson L, . The transferrin receptor: a potential molceular imaging marker for human cancer. Neoplasia 2003;5:495–506.
  • Seppenwoolde JH, Viergever MA, Bakker CJ. Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 2003;50:784–90.
  • Seppenwoolde JH, Vincken KL, Bakker CJ. White-marker imaging-Separating magnetic susceptibility effects from partial volume effects. Magn Reson Med 2007;58:605–9.
  • Zurkiya O, Hu X. Off-resonance saturation as a means of generating contrast with superparamagnetic nanoparticles. Magn Reson Med 2006;56:726–32.
  • Mani V, Briley-Saebo KC, Hyafil F, Fayad ZA. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 2006;55:126–35.
  • Mani V, Briley-Saebo KC, Hyafil F, Fayad ZA. Feasibility of in vivo identification of endogenous ferritin with positive contrast MRI in rabbit carotid crush injury using GRASP. Magn Reson Med 2006;56:1096–106.
  • Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, . Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 2008;60:73–81.
  • Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 2005;53:999–1005.
  • Foltz WD, Cunningham CH, Mutsaers AJ, Conolly SM, Stewart DJ, Dick AJ. Positive-contrast imaging in the rabbit hind-limb of transplanted cells bearing endocytosed superpara-magnetic beads. J Cardiovasc Magn Reson 2006;8:817–23.
  • Suzuki Y, Cunningham CH, Noguchi K, Chen IY, Weissman IL, Yeung AC, . In vivo serial evaluation of superpara-magnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magn Reson Med 2008;60:1269–75.
  • Farrar CT, Dai G, Novikov M, Rosenzweig A, Weissleder R, Rosen BR, . Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR Biomed 2008; 21:453–63.
  • Stuber M, Gilson WD, Schär M, Kedziorek DA, Hofmann LV, Shah S, . Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 2007;58:1072–7.
  • Stuber M, Gilson WD, Schaer M. Shedding light on the dark spot with IRON - a method that generates positive contrast in the presence of superparamagnetic nanoparticles. Proc Intl Soc Magn Reson Med 2005;13:2608.
  • Korosoglou G, Shah S, Vonken EJ, Gilson WD, Schär M, Tang L, . Off resonance angiography: a new method to depict vessels—phantom and rabbit studies. Radiology 2008; 249:501–9.
  • Korosoglou G, Weiss RG, Kedziorek DA, Walczak P, Gilson WD, Schär M, . Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using “positive contrast” magnetic resonance imaging. J Am Coll Cardiol 2008;52:483–91.
  • Trivedi RA, Mallawarachi C, U-King-Im JM, Graves MJ, Horsley J, Goddard MJ, . identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 2006; 26:1601–6.
  • Korosoglou G, Tang L, Kedziorek D, Cosby K, Gilson WD, Vonken EJ, . Positive contrast MR-lymphography using inversion recovery with ON-resonant water suppression (IRON). J Magn Reson Imaging 2008;27:1175–80.
  • Gupta T, Virmani S, Neidt TM, Szolc-Kowalska B, Sato KT, Ryu RK, . MR Tracking of Iron-labeled Glass Radioembolization Microspheres during Transcatheter Delivery to Rabbit VX2 Liver Tumors: Feasibility Study. Radiology 2008; 249:845–54.
  • Balchandani P, Yamada M, Pauly J, Yang P, Spielman D. Self-refocused spatial-spectral pulse for positive contrast imaging of cells labeled with SPIO nanoparticles. Magn Reson Med 2009;62:183–92.
  • Dharmakumar R, Koktzoglou I, Li D. Factors influencing fast low angle positive contrast steadystate free precession (FLAPS) magnetic resonance imaging. Phys Med Biol 2007; 52:3261–73.
  • Dharmakumar R, Koktzoglou I, Li D. Generating positive contrast from off-resonant spins with steady-state free precession magnetic resonance imaging: theory and proof-of-principle experiments. Phys Med Biol 2006;51:4201–15.
  • Zhang Z, Dharmakumar R, Mascheri N, Fan Z, Wu S, Li D. Comparison of SPIO and USPIO Cell Labeling for Tracking GFP Gene Marker with Negative and Positive Contrast MRI. Mol Imaging 2009;8:148–55.
  • Dharmakumar R, Zhang Z, Koktzoglou I, Tsaftaris SA, Li D. Dual-contrast cellular MRI. Mol Imaging 2009;8:254–63.
  • Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 2006;19:765–80.
  • Coolen BF, Lee P, Shuter B. Optimized MRI parameters for positive contrast detection of iron-oxide labeled cells using double-echo Ultra-short echo time (d-UTE) sequences. Proc Intl Soc Magn Reson Med 2007;15:2608.
  • Crowe LA, Wang YX, Gatehouse P. Ex vivo MR imaging of atherosclerotic rabbit aorta labelled with USPIO – Enhancement of iron loaded regions in UTE imaging. Proc Intl Soc Mag Reson Med 2005;13:115
  • Liu W, Dahnke H, Rahmer J, Jordan EK, Frank JA. Ultrashort T*2 relaxometry for quantitation of highly concentrated superparamagnetic iron oxide (SPIO) nanoparticle labeled cells. Mag Reson Med 2009;61:761–6.
  • Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000;143:79–87.
  • Khemtong C, Kessinger CW, Ren J, Bey EA, Yang SG, Guthi JS, . In vivo off-resonance saturation magnetic resonance imaging of alphavbeta3-targeted superparamagnetic nano-particles. Cancer Res 2009;69:1651–1658.
  • Kim YB, Bae KH, Lee YH. Positive-Contrast Cellular MR Imaging Using Susceptibility Weighted Echo-time Encoding Technique (SWEET). World Congress on Medical Physics and Biomedical Engineering 2006;14:2493–96.
  • Kim YB, Bae KH, Yoo SS, Park TG, Park H. Positive contrast visualization for cellular magnetic resonance imaging using susceptibility-weighted echo-time encoding. Mag Reson Imaging 2009;27:601–10
  • Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T. Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to super-paramagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 2008;60:595–603.
  • Liu W, Dahnke H, Jordan EK, Schaeffter T, Frank JA. In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR Biomed 2008;21:242–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.